> الأستابيات تجارب معمل الإلكترونية

أولاً: بيـاتـات المعمل الأساسبية

اسم المعمل: معمل القياسـات الإلكترونية

القسم العلمي: هندسة الإلكترونيات والاتصـالات

المشرف: أ.د./ محمد عبدالعظيم

د./ مجدي محمد فاضل
مهندس المعمل:

أمين المعمل: أ/ محمد يوسف مصطفى

1300
التليفون:

الموقع بالنسبة للكلية: المعامل البحرية بالكلية - الطابق الثاني علوي.

127

ثـثانباً: قائمـة بـالأجهزة و المعدات الموجودة بـالمعمل:

Serial Number	العدد	اسم الجهاز	ا
	10	Two channel Oscilloscope.	1
	10	Function generator.	2
	10	Dual power supply.	3
	15	Digital multimeter.	4
	20	Test board.	5
	5	Side cutter (قفافة)	6
	5	Pliers (زدرد)	7

الغرض منها	التجربة	P
التعرف على الأجهزة الإلكترونية الأساسية - وسلوك العناصر الإلكترونبة الأساسية.	How to use Digital Oscilloscope	1
	Passive Elements of Electric Circuits	2
	Transient Circuits	3
	Nonlinear Resistors	4
	Passive Filters	5
	Passive Resonant Circuits	6
	Linear Circuits Theorems	7
	Semiconductor Diodes and Diode Applications	8
	Special Purpose Diodes	9
	Bipolar Junction Transistor (BJT)	10
	Diode and Transistor based Logic Gates	11
	Power Supplies	12

رابعاً: الخذمات المجتمعية التّى بؤدبها المعمل:

- عدد المستفيدين من المعمل: جميع طلاب (مرحلة البكالوريوس والماجستير والدكتور اه) للقسم و أفسام الكلية المختلفة وكذلك بعض الكليات الأخرى.
- الجهات التي تتعاون مع المعلل: جميع أقسام الكلية وبعض الكليات الأخرى.
- لا الايتم تحصيل أية رسوم.
- إلجهات الممولة لأنثطة المعمل: إدارة الكلية.
- المشاريع التتفسية التي يشارك فيها المعمل: العديد

خامسـاً: الخدمـات الطلابية (التي بؤدبيها المعمل:

- عد الطلاب المستفيدين من المعمل: جميع طـلاب (مرحــة البكـالوريوس والماجستير والـكتوراه) للقسم وأقسام الكلية المختلفة وكنلك بعض الكليات الأخرى.
- الأقسام العلمية المستفيدة من المعمل: جميع أقسام الكلية وبغض الكليات الأخرى.
" الفرق اللراسية المستفيدة من المعمل: جميع طلاب (مرحةة البكالوريوس والماجستير والـكتوراه) للقسم وأقسام الكلية الهختلفة وكذلك بعض الكليات الأخرى.
- المقررات الاراسية التي تستفيد من المعمل: مقررات القسم والأقسام الأخرى.
* الأنشطة الطلابيـة داخل المعــل: سكاثـن ومشـاريع تخر ج ومشـاريع تتافسية وأبحـاث ماجستير ودكتور اه.
- عدد طلاب الاراسات العليا المستفيدين من المعمل: العديد
- عدد الرسائل العلمية التي تمت في المعطل: العديد
- عدد الاورات التتريبية التي تمت في المعمل: العديد
- المسابقات العملية التي شارك فيها طلاب من المستففيدن من المعمل: العديد

Course Contents

Experiment-0: Overview of laboratory equipment's (Digital Multimeters, Function Generators, Oscilloscope)
Experiment-1: Passive Elements.
Experiment-2: Transient Circuits.
Experiment-3: Nonlinear Resistances.
Experiment-4: Passive Filters.
Experiment-5: Resonant Circuits.
Experiment-6: Circuit Theorems.
Experiment-7: Diodes and Applications.
Experiment-8: Special Diodes.
Experiment-9: Bipolar Junction Transistors.
Experiment-10: Logic Gates.
Experiment-11: Power Supplies.

Introduction

AC Source

DC Source

Measuring/ Displaying Devices

Multimeters

\square Multimeters are mainly used to measure three electrical quantities:
$>$ Voltage: both DC and AC
$>$ Current: both DC and AC.
> Resistors.
\square There are two types of multimeters: $>$ Digital

- Its outputs are numbers displayed on a liquid crystal display.
$>$ Analog
- Its outputs are displayed on a linear or nonlinear scale.

Multimeters (cont ${ }^{4} \mathrm{~d}$)

Multimeters: Usage and Functions

\square Ammeter measures current in a branch or through a circuit element.
\square Voltmeter measures the potential difference (voltage) between two points (across a circuit element).
\square Ohmmeter measures resistance.
\square A multimeter combines all of the above functions, and possibly some additional ones as well, into a single instrument.

Multimeter as an Ammeter

Procedure (steps)

- Turn power off before connecting the multimeter.
- Break the circuit.
- Place multimeter in series with the circuit branch
- Select highest current scale and turn the power on
- Measure the required current or currents.
- Turn the power off.
- Disconnect the multimeter and reconnect the circuit.

Multimeter as an Ammeter (cont ${ }^{\text {d }}$)

arimeter

$$
\begin{gathered}
I_{a}=\frac{V}{R_{1}+R_{2}} \\
I_{m}=\frac{V}{R_{1}+R_{2}+R_{m}}
\end{gathered}
$$

The Ammeter is connected as a series device, thus, its internal resistance should be very small (ideally $\mathbf{R}_{\mathrm{m}} \approx 0$)

يفضل أن تكون المقاومة الداخلية للأميتر صغيرة جداً حتي تكون قيمة التيار المحسوبـة مساويـة للتيار المقاس.

Ammeter Snapshot

Multimeter as a Voltmeter

- Voltage measurements are the most common measurements.
- Voltage measurements are easy to do because you do not need to change the original circuit.

- To use a multimeter as a voltmeter, it should be connected in parallel between the two points where the measurement is to be made.

Multimeter as a Voltmeter (cont ${ }^{\text {d }}$)

Procedure (steps)

- Select the DC or AC Volts.
- Start at the highest scale (If not a auto-ranging multimeter) and work your way down.
- Do NOT touch any other electronic components within the equipment and do not touch the metal tips.

Multimeter as a Voltmeter (cont ${ }^{\text {d }}$)

The voltmeter provides a parallel pathway, thus it needs to be of a high resistance (ideally $\mathbf{R}_{\mathrm{m}} \approx \infty$)

يفضل أن تكون المقاومة الداخلية للفولتميتر كبيرة جداً حتي تكون قيمة فرق الجهر المحسوب مساوية لفرق الجها المقاس.

Voltmeter Snapshot

Multimeter as an Ohmmeter

Procedure (steps)

- Turn the power off before connecting the multimeter.
- Remove the component from the circuit.
- Start at lowest Ohm setting.

Multimeter as an Ohmmeter (cont d)

ohmirneter

Avoid touching the resistors end tips as the reading reflects the parallel value of the resistor and your body resistance

لايفضل لمس أطراف المقاومـة باليـد حيث أن الجسـم موصـل وبالتـالي تقـاس المقاومـة بـلتـوازي مـع مقاومـة

Ohmmeter Snapshot

Course Contents

Experiment-O: Overview of laboratory equipment's (Digital Multimeters, Function Generators. Oscilloscope)
Experiment-1: Passive Elements.
Experiment-2: Transient Circuits.
Experiment-3: Nonlinear Resistances.
Experiment-4: Passive Filters.
Experiment-5: Resonant Circuits.
Experiment-6: Circuit Theorems.
Experiment-7: Diodes and Applications.
Experiment-8: Special Diodes.
Experiment-9: Bipolar Junction Transistors.
Experiment-10: Logic Gates.
Experiment-11: Power Supplies.

Function Generator

aFunction generators can perform the following tasks
> Fixed signal generation

- Sinusoidal waves إثارات جييية
- Square waves إنشار ات مربعة
- Triangular waves إشارات مثلثة

> Signals with variable amplitude, frequency and duty cycle

Function Generator Examples

For the class purposes we will discuss the basic equipment keys/features only.

Function Generator: Main Keys

مفتّاح ضبط إتساع الإشارات Amplitude Dial
> ATT Button مفتّاح خافض الإتساع
> Function Buttons مفاتيح إختيار الإشارات
مفاتيح التّحكم فِي الترددات Frequency Dial and Range Buttons

Amplitude Dial

\square This dial is used to adjust the peak to peak voltage of the $A C$ waveform from 0 to 25.

AMPLITUDE

QSet the amplitude to max by turning the dial completely clockwise.

ATT Button

\square This button is used to set the amplitude of the signal to a significantly smaller range.

aThis button should be in the OUT position unless otherwise directed.

Function Buttons

aSelecting a button sets the type of voltage change over time as a square, triangular or sine wave.

-Press the button for the sine wave.

Frequency Dial and Range Buttons

\square The frequency dial and range buttons are used in conjunction to set the required frequency of the generated waveform.
مؤشر التردد

\square Pressing a range button will multiply the value of the frequency dial by its values (the range button value).
التردد= القيمة الموجود عندها المؤشر في المدي المختّار

Frequency Example

\square Set the FREQUENCY dial to 1.0 and press the RANGE button 10.
aThe resulting frequency is 10 cycles $/ \mathrm{sec}(\mathrm{Hz})$.

Course Contents

Experiment-O: Overview of laboratory equipment's (Digital Multimeters. Function Generators, Oscilloscope)
Experiment-1: Passive Elements.
Experiment-2: Transient Circuits.
Experiment-3: Nonlinear Resistances.
Experiment-4: Passive Filters.
Experiment-5: Resonant Circuits.
Experiment-6: Circuit Theorems.
Experiment-7: Diodes and Applications.
Experiment-8: Special Diodes.
Experiment-9: Bipolar Junction Transistors.
Experiment-10: Logic Gates.
Experiment-11: Power Supplies.

Introduction to Oscilloscope

-One of the most important laboratory equipment.
alt can be used to test/measure/display the circuit signals and; thus, helps in detection of errors/faults.

- تختلف أشنكال الأوسيلبسكوب من جهاز إلى آخر ولكنهـا جميعاً تحتوي على أزرة تحكم منشابهة.

Oscilloscope Main Functions

دGGraphs Voltage vs. time دائماً جهاز الأوسيليسكوب يعرض جهـ
aMeasures the time period of any periodic signal.
\square Measures the frequency of any periodic signal.
-Measures signals amplitude; either DC or AC:
> Peak amplitude.
$>$ Peak-to-peak amplitude.
aNon-electrical quantities (with some additional modification)

Oscilloscope Blockdiagram

Oscilloscope Controls

Oscilloscope Screen

\square The main oscilloscope function is to display voltage
وظيفة الأوسيليسكوب عمل رسم بياني للجهد والزمن حيث يمثل الجهد بالمحور

الرأسي و الوقت بالمحور الأفقي.
\square Most of the oscilloscopes' screens are 5 inches(Diagonal) \square Screen has ruled divisions both horizontally and vertically شاثشات معظم أجهزة الأوسياسكوب o بوصة، و كل شاشثة مقسمة رأسياً و وأفقياً ولها محوران

Oscilloscope Screen: cont ${ }^{3}$ d

الدحور الرأسي Vertical Axis
يثتل الجهـ ويحتوي على ثمانية تقسيمات/مربعات. إرتفاع كل مربع ا سنتيمتر.
المحور الأفقي Horizontal Axis الم
يمثل الزمن ويحتوي على عشرة أفسام/مربعات. عرض كل مربع أفقي ا سنتيمتر.
>Each vertical or Horizontal division (1 cm) has 5 minor ticks of 0.2 cm

كل مربع رأسي أو أفقي مقس إلي خمس أجزاء "قيمة كل منها 0.20 من السنتميتر".

Oscilloscope Controls: cont ${ }^{3}$ d

1- Horizontal Position: Moves the trace from side to side 2- Horizontal Axis Calibration: Calibrate TIME/DIV.

3- TIME/DIV: Adjust the pattern width on the screen

Oscilloscope Controls: cont ${ }^{3}$ d

4- TRIGGER Mode select:
> Auto
> Normal
> Single

Oscilloscope Controls: cont'd

5- SOURCE, SLOPE, COUPLING select:

$>$ Source: Selects the triggering source (INT, LINE, EXT)
$>$ Slope: Selects the polarity of the trigger signal
> Coupling: The coupling betn the trigger signal and sweep generator

Oscilloscope Controls: cont ${ }^{\text {d }}$

6- TRIGGER LEVEL and HOLD OFF

$>$ Level: the starting point of the waveform for triggering
$>$ HOLD OFF: Adjust the amplitude of the triggering signal 7- EXT input connector: Input for external triggering input

Oscilloscope Controls: cont ${ }^{\text {d }}$

8- Channel Select: Selects what to display
> CH 1 or CH 2 : ONLY one of the input
> ALT, CHOP: Either one or Both
> ADD: Algebraic sum

Oscilloscope Controls: cont ${ }^{3}$ d

9- Vertical Position: Move the signal up and down on the screen

Oscilloscope Controls: cont'd

10- Input Coupling Switch: Selects the coupling between the input signal and the vertical amplifier of the oscilliscope
> AC: ONLY AC component is displayed (Capacitor blocks DC)
> DC: The input wavform is displayed including its DC component
> GND: The input to the vertical amplifier is grounded

Oscilloscope Controls: cont'd

11- INT trigger switch: Selects the source of the internal trigger ($\mathrm{CH} 1, \mathrm{CH} 2$ or VERT modes)
> CH 1 or CH 2 : Either one of the input waveforms
> VERT: Alternative choice from CH 1 and CH 2 (for displaying two signals together)

Oscilloscope Controls: cont ${ }^{3}$ d

12- VOLT/DIV: Controls the height of the signal on the screen 13- CH 1 input connector. In $\mathrm{X}-\mathrm{Y}$ mode it represents the x -axis waveform
14- The ground of the oscilloscope

Oscilloscope Controls: cont'd

15- INTENSITY, ROT, FOCUS, ILLUM swiches
> INTENSISTY: Controls the brightness of the trace
> FOCUS: Controls the sharpness of the tracing beam
> ROT: Aligns the trace to be exactly horizontal
> ILUM: Illuminates the graticule to brightens the engraved scale lines

Oscilloscope Controls: cont ${ }^{3}$ d

16- CAL OUT: Used to calibrate the oscilloscope using a 1 V peak-to-peak square wave of 1 kHz .
17- POWER switch: Turns the oscilloscope on and off

Using the Oscilloscope

\square Before you begin you will need:
$>$ An oscilloscope
$>$ A function generator
> A six volt battery and > Two cables

Using the Oscilloscope: cont ${ }^{4}$ d

ملحوظات عامة

- قبل إستخدام الأوسيليسكوب لابد من التأكد من سلامة Probes. - للابد من ضبط مقياس Volts/Div علي قيمة مناسبة. - لآبد من ضبط مقياس Time/Div علي قيمة مناسبة. - التأكد من وضع Trigger علي Auto. - Intensity, focus, and illuminance ضبط الانط •
إختيار أحد القناتين علي الأقل.
التجربة الأولى

Course Contents

Experiment-0: Overview of laboratory equipment's (Digital Multimeters, Function Generators,
Oscilloscope)
Experiment-1: Passive Elements.
Experiment-2: Transient Circuits.
Experiment-3: Nonlinear Resistances.
Experiment-4: Passive Filters.
Experiment-5: Resonant Circuits.
Experiment-6: Circulit Theorems.
Experiment-7: Diodes and Applications.
Experiment-8: Special Diodes.
Experiment-9: Bipolar Junction Transistors.
Experiment-10: Logic Gates.
Experiment-11: Power Supplies.

Experiement-1 Objectives

\square The student will use the basic passive circuit elements (R, L, and C) and laboratory equipment/Components (Oscilloscope, DMM, Breadboards, Function generators) to make basic measurements.
\square The students will also verify Ohm's law for passive elements
\square Finally, the students will compare the performance of these components with both DC and AC and check their series and parallel connections of passive elements.
>> التمكن من تحديد الأنواع المختلفة من العناصر الخاملة (المقاومات و المكثفات والملفات). > تحقيق قانون أوم لكل عنصر والتأكد من كيفية تغير الجهن مع التيار > $>$ مقارنة أداء هذه العناصر مع مصـادر الطاقة بنو عيها (DC and AC) > دراسة طريقة توصيل هذه العناصر في الدوائر(توصبل توالي و توصيل توازي)

I- Resistors

- Resistors are two terminal components used to limit the electric current in circuits by producing a voltage drop between its terminals
- A resistor is schematically shown below. Its characteristic equation or "terminal relation" is given by Ohm's Law:

$$
V=I \times R
$$

Resistors: cont ${ }^{3}$ d

\square Resistors have maximum working voltage and current (power rating) above which the resistance (i) may change (drastically, in some cases) or (ii) the resistor may be physically damaged (overheat or burn up).
\square Common power ratings for carbon composition and metal-film resistors are $1 / 8$ watt, $1 / 4$ watt, and $1 / 2$ watt.

Types of Resistors

\square Resistors broadly categorized into three types: Fixed resistors, Variable resistors, Special-purpose resistors
> Fixed resistors are those whose value cannot be varied after manufacture and are classified into:

- Composition (carbon) resistors,
- Wire-wound resistors,
- Metal-film resistors

Carbon Composition Resistor

Types of Resistors: Variable resistors

\square Variable resistors (Potentiometers or Rheostat) are those whose values can be changed from min to max (with a hopoff built in resistance).

Variable Resistors: cont’d

Potentiometer is a 3-terminal component

Rheostate: Is a 2-terminal componenet

Resistors: Special Purpose Resistors

\square Varistor (Metal Oxide Varistor, MOV) is a special type of resistor that changes its resistance with rise in voltage.
\square Thermistor is a temperature-dependent resistor:
> Positive temperature coefficient (PTC).
> Negative temperature coefficient (NTC).
\square A Sensistor is a semiconductor-based resistor that depends on temperature (with PTC).
\square Photo resistor (Light dependent resistor, LDR) an electronic component whose resistance decreases with increasing incident light intensity.

Resistors Color Coding

Color	Value	Multiplier	Tolerance $(\%)$
Black	0	0	-
Brown	1	1	± 1
Red	2	2	± 2
Orange	3	3	± 0.05
Yellow	4	4	-
Green	5	5	± 0.5
Blue	6	6	± 0.25
Violet	7	7	± 0.1
Gray	8	8	-
White	9	9	-
Gold	-	-1	± 5
Silver	-	-2	± 10
None	-	-	± 20

Resistors Color Coding: contd

Resistor Color Code

Resistors Color Coding: contd

- 4-Band Color Code:
- X اللون الأول يمثل الرقم
- Y اللون الثاني يمثل الرق الرق
- Z اللون الثالث يمثل الأس
- E اللون الرابع يمثل نسبة الخطأ المئوية

$$
\mathrm{R}=\mathrm{XY} \times 10^{\mathrm{Z}}+\mathrm{E}
$$

- 5-Band Color Code:
- X اللون الأول يمثّل الرقم
- Y اللون الثاني يمثل الرق الرق
- Z اللون الثالث يمثل الرق الرم
- W اللهون الرابع يمثل الأس
- E اللون الخامس يمثل نسبة الخطأ المئوية

$$
\mathrm{R}=\mathrm{XYZ} \times 10^{\mathrm{w}}+\mathrm{E}
$$

- 6-Band Color Code: هو نفس الكود الخامس مع إضافة اللون السادس الذي يمثل نسبة التغير مع درجة الحرارة.

$$
\mathrm{R}=\mathrm{XYZ} \times 10^{\mathrm{w}}+\mathrm{E}+\mathrm{T}
$$

Ohm's Law

فرق الجهّ علي طرفي أي مقاومة خطية يتناسب طردياً مع الثيار المار بها. DProcedure: طريقة تحقيق قانون أوم عملاً

Ohm's Law for Resistors with AC sources

V (volt)	-5	-4	-3	-2	-1	0	1	2	3	4	5
I (Amper)											

Series and Parallel Connection

II- Capacitors

\square A capacitor is a passive electronic component that stores energy in the form of an electrostatic field between a pair of closely spaced electrode conductors (called 'plates') separated by an insulator.
\square The unit of capacitance is the farad (coulomb/volt). Practical values usually lie in
 the Pico farad ($1 \mathrm{pF}=10^{-12} \mathrm{~F}$) to microfarad ($1 \mu \mathrm{~F}=10^{-6} \mathrm{~F}$) range.
\square When voltage is applied to the capacitor, electric charges of equal magnitude, but opposite polarity, build up on each plate. The capacitor relationship:

$$
C=\varepsilon \frac{A}{D} \quad q=C v \quad i=c \frac{d v}{d t}
$$

Capacitors Characteristics

\square Capacitors are manufactured as having one of two very basic characteristics, they are either:
$>$ Polarized are very particular about which side (plate) is connected to a relatively positive voltage. Connecting them the wrong way can damage it.
> Non-polarized capacitors can normally be connected into a circuit either way round

Capacitor Types

\square Capacitors are basically named in respect of the nature of the dielectric material used between the plates
> Polarized

- Electrolytic Capacitors
- Tantalum Capacitors
- Super Capacitors
> Non-polarized
- Polyester Film
- Polypropylene Film
- Polystyrene Film
- Metalized Polyester Film
- Epoxy Capacitors
- Ceramic Capacitors
- Multi-Layer Ceramic Capacitors
- Silver Mica Capacitor
- Trimmer capacitors

Capacitor Types: Examples

Electrolytic Capacitors

Tantalum Capacitor

Super Capacitor

Polyester Capacitor
Polypropylene Film Polystyrene Film
Epoxy Capacitor

Capacitors with DC Voltage

- For circuits with a DC-voltage source, the voltage across the capacitor cannot exceed the voltage of the source.
- Thus, an equilibrium is reached where the voltage across the capacitor is constant and the current through the capacitor is zero.

$$
i=c \frac{d v}{d t}
$$

- For this reason, it is commonly said that capacitors block DC.

Capacitors with AC Voltage

- The current through a capacitor due to an AC-source reverses direction periodically.
- With the exception of the instant that the current changes direction, the capacitor current is non-zero at all times during a cycle. For this reason, it is commonly said that capacitors "pass" AC.

$$
i=c \frac{d v}{d t} \longmapsto \mathrm{cos}_{\mathrm{cos}} \quad \mathrm{~S}_{\mathrm{sin}}^{v}=\frac{1}{c} i d t
$$

- The capacitor current leads its voltage by a 90° phase angle, i.e., the voltage and current are 'out-of-phase' by a quarter of a cycle.

Capacitor with AC Voltage: I-V relation

III- Inductors

When An electric current flows through a conductor, it creates a magnetic field its flux is proportional to the current.
\square A change in this current creates a change in magnetic flux that, in turn, generates an electromotive force (emf) (Faraday's Law).
\square Inductance (measured in Henries) is a measure of the generated emf for a unit change in current.

Inductors with DC Voltage

- In general, the relationship between the time-varying voltage $\mathrm{v}(\mathrm{t})$ across an inductor with inductance L and the time-varying current $i(t)$ passing through it is described by the differential equation:

$$
v=L \frac{d i}{d t}
$$

- While a capacitor opposes changes in voltage, an inductor opposes changes in current.
- An ideal inductor would offer no resistance to DC current

Inductors with AC Voltage

- From the i-v differential equation of the inductor:

$$
v=L \frac{d i}{d t} \longrightarrow i=\frac{1}{L} \int v d t
$$

- The inductor current lags its voltage by 90°.

Inductors with AC Voltage: I-V relation

Lab-1 - Overview of Lab Equipment

I. Resistor color codes

Band Color	Digit	Multiplier	Tolerance
Black	0	$1 \boldsymbol{\Omega}$	
Brown	1	$10 \boldsymbol{\Omega}$	$\pm 1 \%$
Red	2	$100 \boldsymbol{\Omega}$	$\pm 2 \%$
Orange	3	$1 \mathrm{~K} \boldsymbol{\Omega}$	
Yellow	4	$10 \mathrm{~K} \boldsymbol{\Omega}$	
Green	5	$100 \mathrm{~K} \boldsymbol{\Omega}$	$\pm 0.5 \%$
Blue	6	$1 \mathrm{M} \boldsymbol{\Omega}$	$\pm 0.25 \%$
Violet	7	$10 \mathrm{M} \boldsymbol{\Omega}$	$\pm 0.1 \%$
Gray	8		
White	9		
Gold		$0.1 \boldsymbol{\Omega}$	$\pm 5 \%$
Silver		$0.01 \boldsymbol{\Omega}$	$\pm 10 \%$

a) By reading the color code, pick a resistor with a $10 \mathrm{~K} \Omega$ nominal value from your component set.
b) From the tolerance band color, find the expected range of values of the actual resistor.

$$
\mathrm{R}_{\min } \leq \mathrm{R}_{\text {actual }} \leq \mathrm{R}_{\max }
$$

c) Use the DMM to measure the actual resistor value.
d) Does the measured value fall in the tolerance range (expected range of values of the actual resistor?
e) Repeat the above steps for a 4.7 K resistor.

II. Voltage divider circuit

Complete the following steps:
f) Build circuit in Figure 1. $\mathrm{R}_{1}, \mathrm{R}_{2}=10 \mathrm{~K} \Omega$. Input signal settings: $1.0 \mathrm{~V}_{\mathrm{pp}}, 500 \mathrm{~Hz}$.
g) Turn on the oscilloscope. Adjust the various settings to see signal on the display.
h) On the oscilloscope screen verify the amplitude of the signal across R_{2}.
i) Use the DMM to measure the signal value.
j) Compare the measured values with the theoretical values.

Repeat the above steps with $\mathrm{R} 1=5 \mathrm{~K} \Omega$ and $\mathrm{R} 2=1 \mathrm{~K} \Omega$ (or any other available resistors values in your box)

Figure 1: Voltage divider

III. Estimating the value of a variable resistor

Complete the following steps:
a) Build the circuit shown in Figure 2. (Note: R2 now is a variable resistor).
b) Play with the potentiometer arm and set the resistor to some unknown value.
c) Turn on the oscilloscope. Adjust various settings to see the signal on the display.
d) From the oscilloscope, estimate the amplitude of voltage across the potentiometer.
e) Using the values in step 4, can you estimate the value of the potentiometer?
f) Use the DMM to measure the potentiometer value.
g) Compare the values obtained in steps 5 and 6 .

Figure 2: Variable resistor

IV. Displaying signal on oscilloscope

Complete the following steps:
a) Build the circuit of Figure $3 \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$. Make sure the signal across the resistor is 1.0 Vpp , 500 Hz .
b) Turn on the oscilloscope. Adjust the various settings until you can see the signal on the display.
c) Verify the frequency and amplitude of the displayed signal.
d) Now, try to change the frequency of the signal from 500 Hz to 1000 Hz . DO NOT CHANGE THE OSCILLOSCOPE SETTINGS
e) Adjust the horizontal scale (time) using Time/Div knob.
f) Play with vertical and horizontal knobs to center the positioning of the signal on the screen.

Figure 3: Set-up for viewing signal on scope

V. Frequency dependent circuit behavior

For each of the circuits shown in Figures 4[A-D], do the following:
a) Build the circuit according to the given components.
b) Set the function generator output signal type to sine wave.
c) Connect the function generator signal to the input of the circuit.
d) Using the oscilloscope, view the input of the circuit on Ch1 and the output on Ch2.
e) Using the amplitude knob on the function generator, set the amplitude level 1 Vpp .
f) Vary frequency of the function generator signal across the values given in the following table and record the peak-to-peak voltage of the output signal of the circuit.

Frequency	Peak-to-peak Voltage of Output Signal
10 Hz	
100 Hz	
1000 Hz	
10000 Hz	
100000 Hz	

e) Make a rough plot of the peak-to-peak voltage (y -axis) versus frequency (x-axis). Describe what happens to amplitude as you increase frequency for each circuit.

Figure 4A

Figure 4C

Figure 4B

Figure 4D

Mansoura University
Faculty of Engineering
Pre-lab Experiment (1)

Electronics and Communications Eng.
Electric Circuits Lab (1)
Resistors, Potentiometers, and Rheostats

Objectives:

1.
2.
3.

Q1. For the resistor shown in figure 1.1 answer the below questions:

Figure 1.1
a) Calculate the nominal value of the resistor using color-code rule.
b) Which color is indicating the tolerance, and what is the tolerance value?

Q2. For the Wheatstone bridge circuit shown in figure 1.2 derive this formula: $R_{x}=$ $\left(R_{2} \times R_{3}\right) / R_{1}$

Figure 1.2

Q3. For the circuit shown in figure 1.3, select R_{o} such that the maximum variation in the current I_{0} is 5 to 2 mA . (Note: Rs is a rheostat with maximum value $5 \mathrm{k} \Omega$ and show all your calculations.)

Figure 1.3

1.1 Objectives:

1. Gain familiarity with available types of resistors, potentiometers, and rheostats.
2. Determine the nominal value of resistance using the color code, and the actual value using different types of measurement.
3. Determine the linearity of a potentiometer, and use it as a voltage divider or control element.

1.2 Introduction:

1.2.1 Resistors:

As discrete components, resistors come in various sizes and shapes depending on their power rating and use. The resistive element material may also vary, e.g., metallic wire, carbon, etc. the resistor most commonly used in the laboratory is made of carbon encased in a tubular form with axial leads as shown in Figure 1.1.

Figure 1.1 Axial-Lead Resistor, Color-Coded
Some resistors may have their nominal ohmic value stamped on the body of the resistor, e.g., 1100 or 2.2 M . More often, however, color code is used to indicate the nominal value. Three-color bands are used for this purpose, each having a numerical value between 0 and 9 , as shown in Table 1.

Table 1. Numerical Values of Color Codes

Black	Brown	Red	Orange	Yellow	Green	Blue	Violet	Gray	White
0	1	2	3	4	5	6	7	8	9

Starting with the band closest to one end of the resistor, as shown in Figure 1.1, the three represented numbers, $\mathrm{n}_{1}, \mathrm{n}_{2}$, and n_{3} mean:

$$
R=\left(\left(10 \times n_{1}\right)+n_{2}\right) \times 10^{n_{3}} \quad \Omega .
$$

For example, Orange-Blue-Black means $((10 \times 3)+6) \times 10^{0}=36 \Omega$, and Gray-Red-Yellow means $((10 \times 8)+2) \times 10^{4}=820 \mathrm{k} \Omega$. A fourth band according to Table 2 indicates the percent tolerance, around the nominal value. The physical size of a resistor depends on its power rating, and vice versa . To keep its temperature at a safe level, a resistor must be large enough to dissipate its rated power into the surrounding design environment.

Table 2. Percent-Tolerance Color Code

Gold	Silver	No Color
± 5	± 10	± 20

1.2.2 Potentiometers:

Potentiometers provide an adjustable resistance between two points as shown in Figure 1.2. The arrowhead represents a movable contact point. Thus the resistance between the terminals a and b (or c and b) can be varied from 0 to 100 percent of the total resistance between a and c . If this variation is proportional to the physical length of the resistive element, the potentiometer is said to be linear. Otherwise, it is nonlinear, e.g., logarithmic. Two popular shapes of potentiometers are circular and straight-line, as shown in Figure 1.3.

Figure 1.2 Potentiometer Schematic Diagram

(a) Circular Type

(b) Straight-line Type

Figure 1.3 Potentiometer Types
A potentiometer is used as a voltage control device to obtain a variable fraction of the potential between two points as shown in Figure 1.4. Here V_{o} can be varied between zero and V_{s}.

Figure 1.4 Potentiometer Voltage Control

1.2.3 Rheostats:

A rheostat is similar to a potentiometer in structure. However, it differs in its intended use. It is used as a series element to control current as shown in Figure 1.7. Thus, it is usually a higher power device.

1.3 Procedure:

1.3.1 Resistance Measurements:

Several methods will be used to measure resistance. Their results will be compared with each other and with nominal color-code value.

1. Obtain two resistors having arbitrary values between 100Ω and $100 \mathrm{k} \Omega$.
2. Tabulate their color codes, nominal values, percent tolerances, and power ratings.
3. Use the DMM to measure the value of each resistor directly on the most sensitive range.
4. As an aside, measure and record your body resistance by holding the probes firmly one with each hand.

Resistors	Nominal Value	Tolerance Value	DMM Value
R1			
R2			
Your Body			

5. Construct a measurement circuit as shown in Figure 1.5, where R_{x} is the resistance to be determined by Ohm's law: $R_{x}=V_{x} / I_{x}$.
6. Increase V_{s} from 0 to near the highest responsible value. (Within limits that are safe for the resistor R_{x})
7. Record the measured values of V_{x}, I_{x}, and calculate the value of R_{x} by the Ohm's law.

V_{s}	3 V	5 V	10 V
V_{x}			
I_{x}			
R_{x}			

8. A Wheatstone bridge for measuring resistance is shown in Figure 1.6. When the Bridge is balanced, i.e., $\mathrm{Ib}=0 \mathrm{~A}$, The following relation holds: $R_{x}=\left(R_{2} \times R_{3}\right) / R_{1}$.
9. Select reasonable values for R1 and R2, and measure them with the DMM before placing them in the circuit.
10. Use a potentiometer to make an adjustable resistor R3. Use approximately 10 V for Vs.
11. Set the DMM initially to the highest current range and adjust R 3 to make Ib approach 0 , stop adjusting when a minimum value of Ib is obtained on the lowest possible range. Record this value for reference only.
12. Disconnect R3 and measure it directly with the DMM
13. Calculate the value of unknown Rx using above formula and compare with the nominal values.

Figure 1.5

Figure 1.6

1.3.2 Potentiometers and Rheostat:

1. For the circuit shown in Figure 1.7, obtain a Potentiometer; select R_{o} such that the maximum variation in the current I_{o} is 5 to 2 mA , then measure and record the value of R_{o}.
2. Construct the circuit using 10 V for V_{s}.
3. Measure I_{o} on the lowest possible range using the 4 marked sections of the potentiometer for R_{s}, i.e, $0,25,50,75$ and 100 percent.

Figure 1.7

$R_{o}=\ldots \ldots \ldots \ldots \ldots \ldots$	
$R_{s}(\mathrm{k} \Omega)$	$I_{o}(\mathrm{~mA})$
5	
4	
3	
2	
1	
0	

Mansoura University
Faculty of Engineering
Post-lab Experiment (1)

Electronics and Communications Eng.
Electric Circuits Lab (1)
Resistors, Potentiometers, and Rheostats

1. Resistance Measurements:

a) Ohmmeter Measurements: Fill the following table according to what you measured at the laboratory. (Note: you should show your calculations.)

Resistors	Nominal Value	Tolerance Value	DMM Value
R1			
R2			
Your Body			

b) Ohm's Law: Fill the following table: $R_{x}=V_{x} / I_{x}$.

V_{s}	3 V	5 V	10 V
V_{x}			
I_{x}			
R_{x}			

c) Plot I_{x} vs V_{x} and find the slope of the curve $\left(R_{x}\right)$.

d) For Wheatstone Bridge Experiment, $R_{3}=$ \qquad Calculate the value of unknown R_{x} using the balance formula, Compare with the nominal values.
e) Potentiometers and Rheostat: The selected $R_{o}=$ \qquad . Fill the following table.

$R_{s}(\mathrm{k} \Omega)$	$I_{o}(\mathrm{~mA})$
5	
4	
3	
2	
1	
0	

f) Plot I_{o} vs R_{s}. What functional relation does this plot indicate?

2. Conclusion and Discussion:

List your conclusion about all parts of this experiment, and discuss the results as points:
\qquad

التجربة الثانية

Mansoura University
Faculty of Engineering
Experiment (2)

Electronics and Communications Eng.
Electric Circuits Lab (1)
DC Circuits Measurements

2.1 Objectives:

Verify Kirchhoff's voltage and current laws and some of their consequences by measurements on dc circuits.

2.2 Introduction:

2.2.1 Series Circuits:

Kirchhoff's Voltage Law (KVL) states that the sum of voltages around a closed path is zero. We can verify this law by measurements on simple series circuits as circuit shown at Figure 2.1.

2.2.2 Parallel Circuits:

Kirchhoff's Current Law (KCL) states that the sum of all currents at any node in a circuit is zero. We can verify this law by measurements on a simple parallel circuit as the circuit shown at Figure 2.2.

2.2.3 Series-Parallel Circuits:

Both KVL and KCL are now verified by measurements in a rather arbitrary circuit containing series and parallel combinations of resistors as shown at Figure 2.3.

2.3 Procedure:

2.3.1 Series Circuits:

1. Construct the circuit shown in Figure 2.1 with the given values of resistors.

Figure 2.1
2. Measure the value of I_{s} by using the DMM as an ammeter. $\boldsymbol{I}_{s}=$ \qquad .
3. Move the connection of the voltmeter around the circuit to measure the voltages:

V_{s}	$V_{a b}$	$V_{b c}$	$V_{c d}$	I_{s}
9 V				

4. Disconnect the power supply from the circuit, and use the DMM as an ohmmeter to measure the resistances values; (you need to use the measured values of resistances and I_{s} to calculate the different voltages, and compare the results with the measured values of these voltages.)

Resistor Name	Measured Value
R_{1}	
R_{2}	
R_{3}	

2.3.2 Parallel Circuits:

1. Construct the circuit shown in Figure 2.2 with the given values of resistors.

Figure 2.2
2. Measure the value of I_{s} by using the DMM as an ammeter. $\boldsymbol{I}_{s}=$ \qquad .
3. Now place the ammeter in series with R_{1}, R_{2}, and R_{3} to measure the values of the different currents:

V_{s}	I_{1}	I_{2}	I_{3}	I_{s}
9 V				

4. Disconnect the power supply, and use the DMM as an ohmmeter to measure the parallel combination of R_{l}, R_{2}, and R_{3}, then measure each resistance separately, (you need to use the measured values of resistances and V_{s} to calculate the different currents, and compare the results with the measured values of these currents.).

Resistor Name	Measured Value
R_{1}	
R_{2}	
R_{3}	
$R_{E Q}$	

2.3.3 Series-Parallel Circuits:

1. Construct the circuit shown in Figure 2.3 with the given values of resistors.
2. Use the DMM as a voltmeter to measure V_{s}, and the different voltages across the individual resistors, as indicated:

Voltage Name	Measured Value
V_{s}	
V_{1}	
V_{2}	
V_{3}	
V_{4}	
V_{5}	
V_{6}	

3. Use the DMM as an ammeter to measure the different currents across the resistors, as below:

Current Name	Measured Value
I_{1}	
I_{2}	
I_{3}	
I_{4}	
I_{5}	
I_{6}	

4. Use the DMM as an ohmmeter to measure the different resistances, as below:

Resistor Name	Measured Value
R_{1}	
R_{2}	
R_{3}	
R_{4}	
R_{5}	
R_{6}	

5. Now, use the measured values of voltages to verify KVL on all closed paths, and use the measured values of currents to verify KCL at all nodes. Finally, use the measured values of resistances with Ohm's law to calculate voltages using measured currents and vice versa, then compare all the measured quantities.

Figure 2.3

Mansoura University
Faculty of Engineering
Post-lab Experiment (2)
Electronics and Communications Eng.
Electric Circuits Lab (1)
DC Circuits Measurements

1. Series Circuits:

After connect the circuit shown in Figure 2.1, fill the below tables and answer the following questions:

Figure 2.1

V_{s}	$V_{a b}$	$V_{b c}$	$V_{c d}$	I_{s}
9 V				

Resistor Name	Measured Value
R_{1}	
R_{2}	
R_{3}	

Q1. Compare the sum of these voltages to V_{s}.

Q2. Use the above values and the measured value of I_{s} to calculate different voltages by Ohm's law, and compare them with the values obtained previously.

Voltage Name	Measured Value	Calculated Values Using Ohm's Law
$V_{a b}$		
$V_{b c}$		
$V_{c d}$		

Q3. Now, use voltage division to calculate different voltages, and compare your results with the measured values.

Voltage Name	Calculated Value	Measured Value
$V_{a b}$		
$V_{b c}$		
$V_{c d}$		

2. Parallel Circuits:

After connect the circuit in Figure 2.2, fill the table below and answer the following questions:

Figure 2.2

V_{s}	I_{1}	I_{2}	I_{3}	I_{s}
9 V				

Q4. Compare the sum of the above currents with I_{s}.

Q5. Use current division to calculate different currents, and compare your results with the measured values.

Current Name	Calculated Value	Measured Value
I_{1}		
I_{2}		
I_{3}		

3. Series-Parallel Circuits:

After connect the circuit in Figure 2.3, record the following results and answer the related question.

Q6. Now, use the measured values of voltages to verify KVL on all closed paths, and use the measured values of currents to verify KCL at all nodes. Finally, use the measured values of resistances with Ohm's law to calculate voltages using measured currents and vice versa, then compare all the measured quantities.

Figure 2.3

Voltage Name	Measured Value
V_{s}	
V_{1}	
V_{2}	
V_{3}	
V_{4}	
V_{5}	
V_{6}	

Current Name	Measured Value
I_{1}	
I_{2}	
I_{3}	
I_{4}	
I_{5}	
I_{6}	

Resistor Name	Measured Value
R_{1}	
R_{2}	
R_{3}	
R_{4}	
R_{5}	
R_{6}	

Page $\mathbf{3}$ of $\mathbf{4}$

Conclusion and discussion:

List your Conclusion about all parts of this experiment, and discuss the results as points:

التجربة الثالثة

Mansoura University
Faculty of Engineering
Pre-lab Experiment (3)

Electronics and Communications Eng.
Electric Circuits Lab (1)
Thevenin's theorem, Norton's theorem's and maximum power transfer

Objectives:

1.
2.
3.

Q1) For the circuit shown in fig. 1, find the current through resistor $R_{L}=R_{1}=1 \Omega$ ($I_{a b}$ branch) using Thevenin's theorem \& hence calculate the voltage across the current source ($V_{c g}$).

Fig. 1

Q2) for the circuit in Fig. 2 below,

Fig. 2
(a) Determine $R_{T H}$ and $V_{T H}$ for the network external to the $2-\mathrm{k} \Omega$ resistor
(b) Determine power delivered to the $2-\mathrm{k} \Omega$ resistor using the Thevenin equivalent circuit.
(c) Is the power determined in pat (b) the maximum power that could be delivered to a resistor between terminals x and y ? If not, what is the maximum power?

1.1 Objectives:

1. Validate Thevenin's theorem and Norton's theorem through experimental measurements.
2. Become aware of an experimental procedure to determine $V_{T H}, I_{N}$ and $R_{T H}$ or R_{N}. Hence the Thevenin and Norton equivalent circuits.
3. Demonstrate the conditions for maximum power transfer to a load are $R_{L}=R_{T H}$ and $V_{L}=$ $V_{T H} / 2$.

1.2 Introduction:

Sometimes in circuit analysis we want to concentrate on what happens at a specific pair of terminals. As an example, when we plug a mobile phone charger into an outlet, we are mostly interested in the voltage and current at the terminals of the charger. We have no interest in the effect of the charger on voltages or currents elsewhere in the circuit supplying the outlet. In this laboratory experiment we are going to take a look at Thevenin and Norton equivalent circuits, which are circuit simplifications techniques that focus on terminal behavior.

1.2.1 Thevenin's Theorem:

Any combination of sources and resistances with two terminals can be replaced by a combination of a single voltage source $\left(V_{T H}\right)$ in series with a single resistor $\left(R_{T H}\right)$. The value of the Thevenin voltage is the open circuit voltage at the output terminals. The value of the Thevenin resistance is the equivalent resistance looking back into the network at the output terminals with all voltage sources replaced by a short and all current sources replaced by an open. In Figure 1 a particular driving circuit with output terminals a and b has been replaced by its Thevenin equivalent circuit, consisting of a Thevenin voltage source $V_{T H}$ in series with the Thevenin resistance $R_{T H}$.

Figure 1 Thevenin equivalent circuit

If the circuit contains	You should do
Resistors and independent sources	1) Connect an open circuit between a and b. 2) Find the voltage across the open circuit which is $V_{O C} . V_{O C}=V_{T H}$. 3) Deactivate the independent sources. Voltage source >>> short circuit Current source >>> open circuit 4) Find $R_{T H}$ by circuit resistance reduction
Resistors and dependent sources or independent sources	1) Connect an open circuit between a and b. 2) Find the voltage across the open circuit which is $V_{O C} . V_{O C}=V_{T H}$. * If there are both dependent and independent sources. 3) Connect a short circuit between a and b. 4) Determine the current between a and b . 5) $R_{T H}=V_{o c} / I_{s c}$ * If there are only dependent sources. 3) Connect 1 Ampere current source flowing from terminal b to a. $I_{t}=1[\mathrm{~A}]$ 4) Then $R_{T H}=V_{o c} / I_{t}=V_{o c} / 1$

1.2.2 Norton's Theorem:

Any combination of sources and resistances with two terminals can be replaced by a combination of a single current source $\left(I_{N}\right)$ in parallel with a single resistor $\left(R_{N}\right)$. The value of the Norton current is the short circuit current at the at the output terminals. The value of the Norton resistance is the equivalent resistance looking back into the network at the output terminals with all voltage sources replaced by a short and all current sources replaced by an open. In Figure 2 a particular driving circuit with output terminals a and b has been replaced by

Figure 2 Norton equivalent circuit
its Norton equivalent circuit, consisting of a Norton current source I_{N} in parallel with the Norton resistance R_{N}.

How to find Norton's Equivalent Circuit?

If the circuit contains	You should do
Resistors and independent sources	1) Deactivate the independent sources. Voltage source >>>short circuit Current source >>> open circuit 2) Find R_{N} by circuit resistance reduction 3) Connect a short circuit between a and b. 4) Find the current across the short circuit which is $I_{N}=I_{s c}$.
Resistors and dependent sources or independent sources	1) Connect a short circuit between a and b. 2) Find the current across the short circuit which is $I_{N}=I_{s c}$. * If there are both dependent and independent sources. 3) Connect an open circuit between a and b. 4) Determine the voltage between a and b . $V_{o c}$ $=V_{a b}$ 5) $R_{N}=V_{o c} / I_{s c}$ * If there are only dependent sources. 3) Connect 1 Ampere current source flowing from terminal b to a. $I_{t}=1[\mathrm{~A}]$ 4) Then $R_{N}=V_{o c} / I_{t}=V_{o c} / 1$

Note

1) The theory of source conversion dictates that the Norton and Thevenin circuits be terminally equivalent and related as follows:

$$
\begin{equation*}
R_{N}=R_{T h} \quad V_{T h}=I_{N} R_{N} \quad \text { and } \quad I_{N}=\frac{V_{T h}}{R_{T h}} \tag{3.1}
\end{equation*}
$$

2) If a dc voltage source is to deliver maximum power to a resistive load, the load resistor RL must have a value equal to the Thevenin equivalent resistance, $R_{T H}$ "seen" by the load. For
this value, the voltage across the load will be one-half of the Thevenin voltage. In mathematical expression

$$
\begin{equation*}
R_{L}=R_{T h}, \quad V_{L}=\frac{V_{T h}}{2} \quad \text { and } \quad P_{\max }=\frac{V_{T h}^{2}}{4 R_{T h}} \tag{3.2}
\end{equation*}
$$

1.3 Procedure:

1.3.1 THEVENIN'S THEOREM AND NORTON'S THEOREM:

1. Construct the circuit as depicted in Figure 3. Insert the measured resistance values in Table 1.

Fig. 3 Circuit diagram for Thevenin's and Norton's theorems application
2. Turn on the supply and measure the voltage V_{L}. Using ammeter or from Ohm's law, calculate the current I_{L}. Insert the results in Table 2.

Determining $\boldsymbol{R}_{\boldsymbol{T H}} / \boldsymbol{R}_{\boldsymbol{N}}$:

3. Determine $R_{T H} / R_{N}$ by replacing the voltage source with a short-circuit equivalent and measuring the resistance with ohmmeter between terminal x-y with R_{L} being removed as depicted in Figure 4.

Fig. 4 Determining $R_{T H} / R_{N}$

Determining $V_{T H}$:

4. Determine $V_{T H}$ by constructing the circuit of Figure 5 and measuring the open-circuit voltage between terminal $\mathrm{x}-\mathrm{y}$ with voltmeter. Insert all results in Table 2.

Fig. 5 Circuit connection for determining $V_{T H}$

Determining I_{N} :

5. Determine I_{N} by constructing the circuit depicted in Figure 6 and measuring the short circuit current between terminal x - y with ammeter. Insert the result in Table 2.

Fig. 6 Circuit connection for determining I_{N}

Thevenin Equivalent Circuit:

6. Construct the Thevenin equivalent circuit as depicted in Figure 7 using values obtained in parts 3 and 4 respectively. Use ohmmeter to set the potentiometer properly. Then measure the voltage V_{L} and I_{L}. Insert the values in Table 2.

Fig. 7 Constructing Thevenin equivalent circuit

1.3.2 MAXIMUM POWER TRANSFER

1. Replace RL in Figure 3.3 with a $10-\mathrm{k} \Omega$ potentiometer without disturbing the previous position of the wiper arm. Measure the load voltage V_{L} across the potentiometer to check the conditions that at $R_{L}=R_{T H}$, the load voltage is half the amount of the Thevenin voltage. Record your observation in Table 3.
2. Leave the potentiometer as connected in Figure 8 and measure V_{L} for all values of R_{L} appearing in Table 4. Then calculate the resulting power to the load and complete the table. At the very least, remember to disconnect one side of the potentiometer when making the setting.

Fig. 8 the maximum power transfer testing circuit

RESULT

Resistor Designation	Measured Value $(\boldsymbol{\Omega})$
\mathbf{R}_{1}	
\mathbf{R}_{2}	
\mathbf{R}_{3}	
$\mathbf{R}_{\mathbf{L}}$	

Table 1: Measured resistors values.

Param.	Theoretical Result (PRE-LAB)	Experimental Result		Percentage Difference (\%)	
		Original Circuit	Thevenin/ Norton Circuit	Original Circuit	Thevenin/ Norton
$\mathbf{V}_{\mathbf{T h}}(\mathbf{V})$					
$\mathbf{R}_{\text {Th }} / \mathbf{R}_{\mathbf{N}}$ $(\mathbf{k} \boldsymbol{\Omega})$					
$\mathbf{I}_{\mathbf{N}}(\mathbf{m A})$					
$\mathbf{V}_{\mathbf{L}}(\mathbf{V})$					
$\mathbf{I}_{\mathbf{L}}(\mathbf{m A})$					

Table 2: Thevenin and Norton electrical parameters, voltage and load current.

Load Voltage, \mathbf{V}_{L} (Volt)	Load Resistance, \mathbf{R}_{L} (Ohms)

Table 3: Conditions for maximum power transfer to the load.

$\mathbf{R}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{L}}$ (measured) (Volt)	$\mathbf{P}_{\mathbf{L}}=\mathbf{V}_{\mathbf{L}}{ }^{2} / \mathbf{R}_{\mathbf{L}}$ (calculated) (miliWatt)
400Ω		
800Ω		
$1.2 \mathrm{k} \Omega$		
$1.6 \mathrm{k} \Omega$		
$2 \mathrm{k} \Omega$		
$2.4 \mathrm{k} \Omega$		
$2.8 \mathrm{k} \Omega$		
$3.2 \mathrm{k} \Omega$		

Table 4: Experimental results to re-confirm the conditions for maximum power transfer to the load.

Mansoura University
Faculty of Engineering

Post-lab Experiment (3)

 Thevenin's and Norton's Theorem, and Max. Power Transfer
1. Thevenin Equivalent Circuit:

After connecting the circuit in Figure 3.1, fill the below tables and answer the following questions:

Figure 3.1 Circuit diagram for Thevenin's and Norton's theorems application

Q1. Indicate your employed resistors in Table 1 for the circuit diagram in Figure 3.1

RESULT

Resistor Designation	Measured Value $(\boldsymbol{\Omega})$
\mathbf{R}_{1}	
\mathbf{R}_{2}	
\mathbf{R}_{3}	
\mathbf{R}_{L}	

Table 1: Measured resistors values.
Q2.Use the circuit analysis (KVL, KCL) to find V_{l}, I_{l} and accordingly fill Table 2
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	Param.	Theoretical Result (PRE-LAB)	Experimental Result		Percentage Difference (\%)	
			Thevenin/ Norton Circuit	Original Circuit	Thevenin/ Norton	
$\mathbf{V}_{\mathbf{T h}}(\mathbf{V})$						
$\mathbf{R}_{\text {Th }} / \mathbf{R}_{\mathrm{N}}$ $(\mathbf{k} \boldsymbol{\Omega})$						
$\mathbf{I}_{\mathbf{N}}(\mathbf{m A})$						
$\mathbf{V}_{\mathbf{L}}(\mathbf{V})$						
$\mathbf{I}_{\mathbf{L}}(\mathbf{m A})$						

Table 2: Thevenin and Norton electrical parameters, voltage and load current.
Q3.Explain the condition for the maximum power transfer and fill Table 3,4 to reconfirm experimentally that condition.

Load Voltage, \mathbf{V}_{L} (Volt)	Load Resistance, $\mathbf{R}_{\mathbf{L}}$ (Ohms)

Table 3: Conditions for maximum power transfer to the load.

$\mathbf{R}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{L}}$ (measured) (Volt)	$\mathbf{P}_{\mathbf{L}}=\mathbf{V}_{\mathbf{L}}{ }^{2} / \mathbf{R}_{\mathbf{L}}$ (calculated) (miliWatt)
400Ω		
800Ω		
$1.2 \mathrm{k} \Omega$		
$1.6 \mathrm{k} \Omega$		
$2 \mathrm{k} \Omega$		
$2.4 \mathrm{k} \Omega$		
$2.8 \mathrm{k} \Omega$		
$3.2 \mathrm{k} \Omega$		

Table 4: Experimental results to re-confirm the conditions for maximum power transfer to the load.

2. Conclusion and Discussion:

List your conclusion about all parts of this experiment, and discuss the results as points:
\qquad

التجربة الرابعة

Mansoura University
Faculty of Engineering
Pre-lab Experiment (4)

Electronics and Communications Eng.
Electric Circuits Lab (1)
L, C I-V Relations, and RL and RC Circuits

Objectives:

1.
2. \qquad
\qquad

Q1. Draw the ideal and the practical circuit model for the inductors and capacitors, then explain briefly the reasons of the differences between ideal and piratical model.
\qquad
Q2. For the RL circuit shown in Figure 4.1, plot $V_{\text {in }}$ and $V_{\text {out }}$ at the same sit of axis. (Note: show only the shape of both signals without the nominal values of the voltages.) Also, calculate the time constant τ for the circuit.

Figure 4.1

Q3. For the RC circuit shown in Figure 4.2, plot $V_{\text {in }}$ and $V_{\text {out }}$ at the same sit of axis. (Note: show only the shape of both signals without the nominal values of the voltages.) Also, calculate the time constant τ for the circuit.

Figure 4.2
\qquad
Q4. Derive the below equation

$$
\tau=\frac{t_{2}-t_{1}}{\ln \left(y_{f}-y_{1}\right)-\ln \left(y_{f}-y_{2}\right)}
$$

Note: start from the following formula:

$$
y(t)=y_{f}-\left(y_{f}-y_{i}\right) e^{-t / \tau}
$$

Q5. Use the same equation of $(\mathrm{Q} 4)$ to prove that about 63% of the change from y_{1} to y_{f} occurs in one time constant.

Mansoura University
Faculty of Engineering
Experiment (4)

Electronics and Communications Eng.
Electric Circuits Lab (1)

4.1 Objectives:

1. Measurement verification of current-voltage (I-V) relations for inductance and capacitance.
2. Measurement verification of RL and RC circuit time constant.

4.2 Introduction:

4.2.1 Inductance and Capacitance Current- Voltage Relations:

Ideal inductors and capacitors can store energy, but their average power loss is zero. Practical components, however, lose a finite amount of energy. Therefore, in addition to inductance and capacitance, their electrical circuit models include resistance as shown in Figure 4.1.

Figure 4.1 Circuit Models for Practical Inductors and Capacitors
From the figure,

$$
\begin{equation*}
v_{t}=v_{L}+v_{R_{L}}=L \frac{d i_{L}}{d t}+R_{L} i_{L} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{t}=i_{C}+i_{R_{C}}=C \frac{d v_{C}}{d t}+\left(v_{C} / R_{C}\right) \tag{2}
\end{equation*}
$$

For high quality components, R_{L} is relatively small and R_{C} is relatively large. Thus, if $d i_{L} / d t$ and $d v_{C} / d t$ are large enough, then $v_{R_{L}} \ll v_{L}$ and $i_{R_{C}} \ll i_{C}$. Consequently,

$$
\begin{equation*}
v_{t} \approx v_{L}=L d i_{L} / d t \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{t} \approx i_{C}=C d v_{C} / d t \tag{4}
\end{equation*}
$$

4.2.2 RL Circuits Transients:

A series RL circuit with a step input voltage is shown in Figure 4.2 (a). For an initial current $i_{L}(0)=I_{0}$, which may be positive or negative, the inductor current and voltage transient responses for $t \geq 0$ are given by:

$$
\begin{equation*}
i_{L}(t)=\frac{V_{m}}{R}-\left(\frac{V_{m}}{R}-I_{0}\right) e^{-t / \tau} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{L}(t)=\left(V_{m}-R I_{0}\right) e^{-t / \tau} \tag{6}
\end{equation*}
$$

where $\tau=L / R$ is the circuit time constant. Figures 4.2 (b) and 4.2 (c) depict the responses given by equations (5) and (6) with $V_{m}>0$ and $\mathrm{I}_{0}<0$.

(b)

Figure 4.2 RL Circuit and Transient Responses
A basic feature of the exponential function having the general form

$$
\begin{equation*}
y(t)=y_{f}-\left(y_{f}-y_{i}\right) e^{-t / \tau} \tag{7}
\end{equation*}
$$

where y_{f} is the final value of y and y_{i} is its initial value, is that τ can be calculated using any two points, y_{1} and y_{2}, corresponding to t 1 and t 2 , , respectively,

$$
\begin{equation*}
\tau=\frac{t_{2}-t_{1}}{\ln \left(y_{f}-y_{1}\right)-\ln \left(y_{f}-y_{2}\right)} \tag{8}
\end{equation*}
$$

It is noted that $y_{f} \approx \mathrm{y}(\mathrm{t} \geq 5 \tau)$. For the special case where $\left(t_{2}-t_{l}\right)=\tau$, equation (8) yields:

$$
\begin{equation*}
y_{2}-y_{1}=\left(1-e^{-1}\right)\left(y_{f}-y_{1}\right)=0.0632\left(y_{f}-y_{1}\right) \tag{9}
\end{equation*}
$$

That is, about 63% of the change from y_{l} to y_{f} occurs in one time constant. Likewise, one can show that 99.3% of this change occurs in five time constants.

4.2.3 RC Circuits Transients:

Similarly, for the RC circuit shown in Figure 4.3 (a), the transient responses $v_{C}(t)$ and $i_{C}(t)$ are shown in Figures 4.3 (b) and 4.3 (c) for an initial capacitor voltage $V_{C}(0)=\mathrm{V}_{0}<0$.

The applicable equations for this case are:

$$
\begin{align*}
& v_{C}(t)=V_{m}-\left(V_{m}-V_{0}\right) e^{-t / \tau} \tag{10}\\
& i_{C}(t)=\left(\left(V_{m}-V_{0}\right) / R\right) e^{-t / \tau} \tag{11}
\end{align*}
$$

where $\tau=R C$ is the circuit time constant.

(b)

(C)

Figure 4.3 RC Circuit and Transient Responses

4.3 Procedure:

4.3.1 Inductor Test:

1. Obtain a $400-\mathrm{mH}$ inductor and use DMM to measure the DC resistance R_{L}.
2. Construct the circuit shown in Figure 4.4, where V_{s} is $4 V_{p-p}$ square wave with 2 kHz frequency, and $R_{s}=47 \Omega$.

Figure 4.4
3. Display the Function Generator output voltage V_{S} on $C h .1$ of the oscilloscope, and V_{2} across R_{s} on Ch. 2 of the oscilloscope.
4. Make an accurate sketch of both signals showing values of time and amplitude.

$R_{L}=$	$R_{s}=47 \Omega$	$L=400 \mathrm{mH}$
Period of I/P Signal $V_{s}(t)$	$\mathrm{T}=(1 / \mathrm{F})=$	

Ch. 1 of the Oscilloscope	$V_{S}(t)$

Ch. 2 of the Oscilloscope	$V_{2}(t)$

4.3.2 Capacitor Test:

1. Obtain a $0.02-\mu \mathrm{F}$ capacitor and use DMM to measure the DC resistance $R_{C}=$ \qquad _.
2. Construct the circuit shown in Figure 4.5 , where V_{s} is $8 V_{p-p}$ triangular wave with 200 Hz frequency, and $R_{s}=500 \Omega$.

Figure 4.5
3. Display the Function Generator output voltage V_{S} on Ch. 1 of the oscilloscope, and V_{2} across R_{s} on Ch. 2 of the oscilloscope. (Use DC coupling on both Scope channels.)
4. Make an accurate sketch of both signals showing values of time and amplitude.

Ch. 1 of the Oscilloscope	$V_{S}(t)$		
Ch. 2 of the Oscilloscope			

4.3.3 RL-Circuit Transient Tests:

1. Construct the RL circuit shown in Figure 4.6 with $R=1 \mathrm{k} \Omega$ and $L=1000 \mathrm{mH}$.

Figure 4.6
2. Use the DMM to measure the DC resistance of the inductor and the actual value of R.

R_{g}	R_{L}	$R_{\text {measured }}$	$\tau=\mathrm{L} /\left(\mathrm{R}_{\mathrm{g}}+\mathrm{R}_{\mathrm{L}}+\mathrm{R}\right)$	$\mathrm{T} / 2$
50Ω				

3. Use a $100-\mathrm{Hz}$ symmetrical square wave from the Function Generator, with $V_{S}=4 \mathrm{Vp}-\mathrm{p}$.
4. Connect the Oscilloscope to measure $V_{L}(t)$. (See Figure 4.2.)
5. Make an accurate sketch of $V_{L}(t)$, and then expand the time scale to make an accurate measurement of τ using the 63% change Criterion.

6. Measure τ using two-point method:

t_{1}	y_{1}	t_{2}	y_{2}	y_{f}	τ

7. Exchange the positions of R and L in the circuit to enable the display of V_{R} by using a common ground between the scope and Function Generator, then sketch V_{R}.

4.3.4 RC-Circuit Transient Tests:

1. Construct the RC circuit shown in Figure 4.7 with $\mathrm{R}=100 \mathrm{k} \Omega$ and $\mathrm{C}=10 \mathrm{nF}$.

Figure 4.7
2. Use the DMM to measure the DC resistance of the capacitor and the actual value of R.

R_{g}	R_{C}	$R_{\text {measured }}$	$\tau=\mathrm{C} \times\left(\mathrm{R}_{\mathrm{g}}+\mathrm{R}\right)$	$\mathrm{T} / 2$
50Ω				

3. Use a $100-\mathrm{Hz}$ symmetrical square wave from the Function Generator, with $V_{S}=4 \mathrm{Vp}-\mathrm{p}$.
4. Connect the Oscilloscope to measure $V_{C}(t)$. (See Figure 4.3.)
5. Make an accurate sketch of $V_{C}(t)$, and then expand the time scale to make an accurate measurement of τ using the 63% change Criterion.

$V_{C}(t)$

Record the Measured Value of τ

6. Measure τ using two-point method:

t_{1}	y_{1}	t_{2}	y_{2}	y_{f}	τ

7. Exchange the positions of R and C in the circuit to enable the display of V_{R} by using a common ground between the scope and Function Generator, then sketch V_{R}.

$V_{R}(t)$	

Q1) Consider the following circuit, whose voltage source provides $v_{\text {in }}(t)=0$ for $\mathrm{t}<0$, and $v_{\text {in }}(t)=10 \mathrm{~V}$ for $\mathrm{t} \geq 0$. Write and draw the equation of $v_{\text {out }}(t)$

Q2) for the previous circuit, consider $\mathrm{R}=100 \mathrm{k} \Omega$ and $\mathrm{C}=10 \mathrm{nF}$ with $v_{\text {in }}(t)=4 \mathrm{Vp}-\mathrm{p}$ square wave. Sketch observed pattern of $V_{C}(t)$ and $V_{R}(t)$ produced by the RC circuit on top of the Square waveform $v_{i n}(t)$. Calculate the error percentage between the measured and calculated time constant.

Q3) for the following circuit, Sketch observed pattern of V_{2} produced by the RC circuit on top of the triangle waveform V_{s}

Q4) for the following RL circuit with $\mathrm{R}=1 \mathrm{k} \Omega$ and $\mathrm{L}=1000 \mathrm{mH}$, Calculate the error percentage between the measured and calculated time constant. Make an accurate sketch of $V_{L}(t)$ on top of the Square waveform $v_{s}(t)$.

Q5) List your conclusion about all parts of this experiment and discuss the results as points.

Answers

\qquad

التجربـة الخامسة

Mansoura University
Faculty of Engineering
Pre-lab Experiment (5)

Electronics and Communications Eng.
Electric Circuits Lab (1)
RLC TRANSIENT RESPONSE

Objectives:

1.
2.
3.

Q1: Derive the transient current and voltage responses for the following circuits to an input step, from -5 to +5 Volts. Then, determine α and ω_{0}. Calculate the roots of the characteristic equation, $s_{1,2}$ and determine $v_{C}(0)$, and $v_{C}(\infty)$, and $\frac{d v_{C}(0)}{d t}$.

Mansoura University
Faculty of Engineering
Experiment (5)

Electronics and Communications Eng.
Electric Circuits Lab (1)
RLC TRANSIENT RESPONSE

5.1 Objectives:

The purpose of this experiment was to observe and measure the transient response of RLC circuits to external voltages.

5.2 Introduction:

5.2.1 Series RLC Circuit Transients:

Fig. 5.1 Series RLC circuit
A series RLC circuit is shown in Fig. 5.1. Hence, the governing Equation is $V_{S}=$ $v_{R}+v_{C}+v_{L}$. Assume a Voltage source makes an abrupt change from V_{i} to V_{f} at $\mathrm{t}=$ 0 . We can conclude the following

$$
\begin{array}{lll}
\mathrm{t}<0: & i=0 . & \mathrm{t} \gg \tau: \\
v_{R}=0 . & i=0 \\
v_{L}=0 . & v_{R}=0 \\
v_{C}=V_{i} . & v_{L}=0 \\
\hline
\end{array}
$$

Hence, the question will be: What is $\boldsymbol{\tau}$? What happens in between?
$\underline{\text { At } \boldsymbol{t}>\mathbf{0}} \quad V_{f}=i R+v_{C}+L \frac{d i}{d t}, \quad i=c \frac{d v_{C}}{d t}, \quad$ then we get

$$
\begin{equation*}
\frac{d^{2} v_{C}}{d t^{2}}+\frac{R}{L} \frac{d v_{C}}{d t}+\frac{v_{C}}{L C}=\frac{V_{f}}{L C} \tag{5.1}
\end{equation*}
$$

Eqn. (5.1) is second-order differential equation which have a particular solution (Transient) and a homogenous solution (Steady state). Hence, the solution can be expressed as

$$
\begin{equation*}
v_{C}=v_{t r}+v_{s s}, \text { where } \quad v_{s s}=V_{f} \quad(\text { easy }!) \tag{5.2}
\end{equation*}
$$

Now we must find the transient part (homogenous)

$$
\begin{equation*}
\frac{d^{2} v_{t r}}{d t^{t}}+\frac{R}{L} \frac{d v_{t r}}{d t}+\frac{v_{t r}}{L C}=0 \tag{5.3}
\end{equation*}
$$

Assume $v_{t r}=A e^{s t}$, then Eqn. (5.3) can be turned, in S domain, into

$$
\begin{gather*}
s^{2}\left(A e^{s t}\right)+\frac{R}{L} s\left(A e^{s t}\right)+\frac{1}{L C}\left(A e^{s t}\right)=0 \tag{5.4}\\
\left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right)\left(A e^{s t}\right)=0 \tag{5.5}\\
A e^{s t} \neq 0, \quad \text { so }\left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right)=0 \\
s=-\frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}} \tag{5.6}\\
s_{1}=-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}, \quad s_{2}=-\frac{R}{2 L}-\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}} \tag{5.7}
\end{gather*}
$$

Hence, the transient solution can be expressed as

$$
\begin{equation*}
v_{t r}=A e^{s_{1} t}+B e^{s_{2} t} \tag{5.8}
\end{equation*}
$$

Accordingly, the final total solution can be expressed as

$$
\begin{equation*}
v_{C}(t)=A e^{s_{1} t}+B e^{s_{2} t}+V_{f} \tag{5.9}
\end{equation*}
$$

Hence, we can conclude that the transient behavior depends on the values of s_{1} and s_{2}. Rename things slightly, $\frac{R}{2 L}=\alpha, \frac{1}{L C}=\omega_{\circ}{ }^{2}$, then

$$
\begin{equation*}
s_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{\circ}^{2}}, \quad s_{2}=-\alpha-\sqrt{\alpha^{2}-\omega_{\circ}^{2}} \tag{5.10}
\end{equation*}
$$

Where α is the damping factor and ω_{\circ} is the resonant frequency.
There are three distinct types of solutions depending on whether $\alpha^{2}-\omega_{\circ}{ }^{2}$ is positive, negative or zero.

1) The underdamped case

If $\omega_{\circ}>\alpha\left(\frac{1}{\sqrt{L C}}>\frac{R}{2 L}\right)$, the two roots s_{1} and s_{2}, given by Eqn. (5.10), are complex conjugate, so the roots can be expressed as
$s_{1}=-\alpha+j \sqrt{\omega_{\circ}^{2}-\alpha^{2}}=-\alpha+j \omega_{d}, \quad s_{2}=-\alpha-j \sqrt{\omega_{\circ}^{2}-\alpha^{2}}=-\alpha-j \omega_{d}$ where $\omega_{d}=\sqrt{\omega_{\circ}^{2}-\alpha^{2}}$ is the damped frequency. By substituting in Eqn. (5.9),

$$
\begin{gather*}
v_{C}(t)=A e^{-\alpha t} e^{j \omega_{d} t}+B e^{-\alpha t} e^{-j \omega_{d} t}+V_{f} \tag{5.12}\\
v_{C}(t)=e^{-\alpha t}\left[(A+B) \cos \omega_{d} t+j(A-B) \sin \omega_{d} t\right]+V_{f} \tag{5.13}
\end{gather*}
$$

Using the initial condition of $v_{c}(0)=v_{c_{0}}=V_{i},\left.\frac{d v_{C}}{d t}\right|_{t=0}=0$, Eqn. (5.13) is turned into

$$
\begin{equation*}
v_{C}(t)=\left(V_{i}-V_{f}\right) e^{-\alpha t}\left[\cos \omega_{d} t+\frac{\alpha}{\omega_{d}} \sin \omega_{d} t\right]+V_{f} \tag{5.14}
\end{equation*}
$$

There is an oscillation in the response, i.e. it is an exponentially decaying sinusoidal. The voltage changes from V_{i} to V_{f}, but wiggles back and forth a few times in the process. The oscillation dies out according to the damping factor over about 5 time constants, where the time constant $\tau=1 / \alpha$. See Fig. 5.2; it shows the Under-damped response $v_{C}(t)$ at $V_{i}=5 \mathrm{~V}, V_{f}=20 \mathrm{~V}, \mathrm{R}=300 \Omega, \mathrm{~L}=25 \mathrm{mH}$, and $\mathrm{C}=60 \mathrm{nF}$.

Fig. 5.2 the Under-damped voltage response OF series RLC circuit

For the under-damped current response, apply the equation: $i(t)=C \frac{d v_{C}(t)}{d t}$. Hence, $i(t)$ is expressed as

$$
\begin{equation*}
i(t)=\frac{V_{f}-V_{i}}{L \omega_{d}} e^{-\alpha t} \sin \omega_{d} t \tag{5.15}
\end{equation*}
$$

As indicated, in Fig. 5.3, is the amplitude of the exponential envelope, $\pm \frac{V_{f}-V_{i}}{L \omega_{d}} e^{-\alpha t}$. It is clear form Eqn. (5.15) that the zero crossings of $i(t)$ occur at multiples of $\mathrm{T} / 2$, where $T=2 \pi / \omega_{d}$ is the period of oscillation. Thus, ω_{d}, may be found from a measurement of the period T, i.e., $\omega_{d}=2 \pi / T$

Fig. 5.3 the under-damped current response of series RLC circuit

For small damping, i.e., $\alpha \ll \omega_{\circ}$, the exponential envelope in Fig. 5.3 is tangent to the $i(t)$ curve near the extremum points, which are also separated by $\mathrm{T} / 2$. Thus, α may be calculated from peak-current measurements using the relation

$$
\begin{equation*}
\alpha=\frac{1}{T} \ln \frac{I_{p_{1}}}{I_{p_{2}}} \tag{5.16}
\end{equation*}
$$

2) The Critically-Damped Case

If $\omega_{\circ}=\alpha$, the two roots s_{1} and s_{2}, given by Eqn. (5.10), are real and equal, so the roots can be expressed as $s_{1}=s_{1}=-\alpha$. By substituting in Eqn. (5.9),

$$
\begin{equation*}
v_{C}(t)=A e^{-\alpha t}+B e^{-\alpha t}+V_{f}=K e^{-\alpha t}+V_{f} \tag{5.17}
\end{equation*}
$$

This causes a bit of a problem, because we are left with only one term in the general solution, and hence only one coefficient - not enough to satisfy the initial conditions.

This suggests that there must be another solution lurking around in the math. In the special circumstances for the critically damped case, the homogeneous equation can be written as

$$
\begin{equation*}
\frac{d^{2} v_{t r}}{d t^{t}}+\frac{R}{L} \frac{d v_{t r}}{d t}+\frac{v_{t r}}{L C}=\frac{d^{2} v_{t r}}{d t^{t}}+2 \alpha \frac{d v_{t r}}{d t}+\alpha^{2} v_{t r}=0 \tag{5.18}
\end{equation*}
$$

To be reformulated to

$$
\begin{array}{r}
\frac{d}{d t}\left[\frac{d v_{t r}}{d t}+\alpha v_{t r}\right]+\alpha\left[\frac{d v_{t r}}{d t}+\alpha v_{t r}\right]=0 \tag{5.19}\\
\frac{d y}{d t}+\alpha y=0, \text { where } y=\frac{d v_{t r}}{d t}+\alpha v_{t r}
\end{array}
$$

Then,

$$
\begin{gather*}
y=A e^{-\alpha t} \rightarrow A e^{-\alpha t}=\frac{d v_{t r}}{d t}+\alpha v_{t r} \tag{5.20}\\
A=e^{\alpha t} \frac{d v_{t r}}{d t}+\alpha v_{t r} e^{\alpha t}=\frac{d}{d t}\left(v_{t r} e^{\alpha t}\right) \tag{5.21}
\end{gather*}
$$

$$
\begin{equation*}
A t+B=v_{t r} e^{\alpha t} \tag{5.22}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
v_{t r}(t)=(A t+B) e^{-\alpha t} \tag{5.23}
\end{equation*}
$$

Now there are two constants and accordingly, by substituting in Eqn. (5.2),

$$
\begin{equation*}
v_{C}(t)=(A t+B) e^{-\alpha t}+V_{f} \tag{5.24}
\end{equation*}
$$

Using the initial condition of $v_{c}(0)=v_{c_{0}}=V_{i},\left.\frac{d v_{c}}{d t}\right|_{t=0}=0$, Eqn. (5.24) is turned into

$$
\begin{equation*}
v_{C}(t)=\left(V_{i}-V_{f}\right)(1+\alpha t) e^{-\alpha t}+V_{f} \tag{5.25}
\end{equation*}
$$

See Fig. 5.4; it shows the critical case response $v_{C}(t)$ at $V_{i}=5 \mathrm{~V}, V_{f}=20 \mathrm{~V}, \mathrm{R}=1 \mathrm{~K} \Omega$, $\mathrm{L}=15 \mathrm{mH}$, and $\mathrm{C}=60 \mathrm{nF}$

Fig. 5.4 Critically-damped response $v_{C}(t)$ of series RLC circuit
For the Critically-damped current response, apply the equation: $\quad i(t)=C \frac{d v_{C}(t)}{d t}$. Hence, $i(t)$ is expressed as

$$
\begin{equation*}
i(t)=\frac{V_{f}-V_{i}}{L} t e^{-\alpha t} \tag{5.26}
\end{equation*}
$$

As indicated, in Fig. 5.5, The maximum value of this current occurs at $t_{m}=\frac{1}{\alpha}$, and equals to $I_{m}=2 \frac{V_{f}-V_{i}}{R} e^{-1}$. For calculating α from experimental data, it is expressed as

$$
\begin{equation*}
\alpha=\frac{\ln t_{2} / t_{1}}{t_{2}-t_{1}} \tag{5.27}
\end{equation*}
$$

where t_{1} and t_{2} are any two points with $i\left(t_{1}\right)=i\left(t_{2}\right)=I_{12}$.

Fig. 5.5 the Critically-damped current response
Note: This case almost never happens. It will be the wildest fluke if the components have exactly the correct ratios to meet the above requirement. For the most part, critical damping is only of academic interest.

3) The Over-Damped Case

If $\omega_{0}<\alpha$, the two roots s_{1} and s_{2}, given by Eqn. (5.10), are real and unequal, so the roots can be expressed as indicated in Eqn. (5.7)

Using the initial condition of $v_{c}(0)=v_{c_{0}}=V_{i},\left.\frac{d v_{C}}{d t}\right|_{t=0}=0$, Eqn. (5.9) is turned into

$$
\begin{equation*}
v_{C}(t)=\left(V_{i}-V_{f}\right)\left[\frac{e^{s_{1} t}}{1-\frac{s_{1}}{s_{2}}}+\frac{e^{s_{2} t}}{1-\frac{s_{2}}{s_{1}}}\right]+V_{f} \tag{5.28}
\end{equation*}
$$

See Fig. 5.6. it shows the over-damped response $v_{C}(t)$ at $V_{i}=5 \mathrm{~V}, V_{f}=20 \mathrm{~V}, \mathrm{R}=1 \mathrm{~K} \Omega$, $\mathrm{L}=15 \mathrm{mH}$, and $\mathrm{C}=0.5 \mu \mathrm{~F}$. It is the Same as critical case plot of slide 10 , except C is larger.

Fig. 5.6 over-damped response $v_{C}(t)$ of series RLC circuit.
For the over-damped current response, apply the equation: $i(t)=C \frac{d v_{C}(t)}{d t}$. Hence, $i(t)$ is expressed as

$$
\begin{equation*}
i(t)=\frac{V_{f}-V_{i}}{2 L} \frac{1}{\sqrt{\alpha^{2}-\omega_{\circ}^{2}}}\left(e^{\left(-\alpha+\sqrt{\alpha^{2}-\omega_{\circ}^{2}}\right) t}-e^{\left(-\alpha-\sqrt{\alpha^{2}-\omega_{\circ}}\right) t}\right) \tag{5.29}
\end{equation*}
$$

As indicated, in Fig. 5.7, the current response in this case is an exponential pulse However, it settles toward its final value more slowly than the critically damped response, and is said to be overdamped.

Fig. 5.7 over-damped current response $i(t)$ of series RLC circuit.

5.2.2 Parallel RLC circuit:

A parallel RLC circuit with a current source is the dual of a series RLC circuit with a voltage source, see Fig.5.8. Therefore, all the formulas given previously apply to the parallel circuit provided we replace R with $1 / \mathrm{R}, \mathrm{L}$ with C , and C with L .

Fig. 5.8 Parallel RLC circuit

5.3 Procedure:

5.3.1 Overdamped case

1. Build the circuit shown in Fig 5.1. use the following $\mathrm{R}=25 \mathrm{~K} \Omega, \mathrm{~L}=500 \mathrm{mH}, \mathrm{C}=10 \mathrm{nF}$, and a square wave input with $4 \mathrm{Vp}-\mathrm{p}$ (with a peak-to-peak amplitude of -2 to +2 volts) at 100 Hz frequency (If needed, you can change the frequency in order to get clear oscilloscope traces in the following measurements). Then fill Table 1.

5.3.2 Underdamped case

1. similarly, build the circuit shown in Fig 5.1. just replace the resistance in the previous case with $\mathrm{R}=1.5 \mathrm{~K} \Omega$. Fill Table 2 which is about the voltage transient response of capacitor.
2. Suppose we want to find the voltage transient response of the $1.5 \mathrm{~K} \Omega$ resistor. The simplest way to solve for the resistor voltage transient is to find the transient circuit current and multiply by the resistor's resistance. Since we are analyzing a series circuit, we will find the transient inductor current and multiply by $1.5 \mathrm{~K} \Omega$. Accordingly, Fill Table 3 which is about the voltage transient response of the resistor.

5.3.3 Critically-damped case

1. use a $50-\mathrm{k} \Omega$ potentiometer for R . Observe the capacitor voltage together with the source voltage on the oscilloscope. Note how you can make the circuit switch back and forth between underdamped and over-damped behavior by adjusting the value of the pot.
2. Display $v_{R}(t)$ on Oscilloscope, Increase R Gradually until the oscillation just disappears. Then, fill Table 4.

Table 1: Overdamped RLC Circuit

Table 2: Underdamped RLC Circuit

Quantity	Calculated Value	Measured, Simulated Value(s)
α		N/A
ω_{0}		N/A
Type of Damping		
$\mathrm{S}_{1,2}$		N/A
ω_{1}		N/A
$\mathrm{v}_{\mathrm{c}}\left(0^{+}\right)$		
$\mathrm{v}_{\mathrm{c}}(\infty)$		
$\nu_{c}(t)=v_{c}(\infty)+\left(B_{1} \cos \omega_{d} t+B_{2} \sin \omega_{d} t\right) e^{-\alpha t}$		
$\mathrm{v}_{\mathrm{c}}\left(0^{+}\right)$ $\mathrm{B}_{1}=$		
$\begin{aligned} & \frac{d v_{c}(t)}{d t}=\left(B_{1} \cos \omega_{d} t+B_{2} \sin \omega_{d} t\right)\left(-\alpha e^{-a t}\right) \\ & \quad+\left(\omega_{d} B_{1} \sin \omega_{d} t+\omega_{d} B_{2} \cos \omega_{d} t\right) e^{-a t} \end{aligned}$		
$\begin{aligned} & \mathrm{dv}_{\mathrm{c}}\left(0^{+}\right) / \\ & \mathrm{B}_{1}= \end{aligned}$		
$\mathrm{v}_{\mathrm{c}}(\mathrm{t})$		
$\mathrm{v}_{\mathrm{c}}(0.5 \mathrm{mS})$		
$\mathrm{v}_{\mathrm{c}}(1 \mathrm{mS})$		
$\mathrm{v}_{\mathrm{c}}(2 \mathrm{mS})$		

Table 3: Underdamped RLC Circuit, Resistor Voltage

Quantity	Calculated Value(s)	Measured, Simulated Value(s)	
α, ω_{0}		N/A	
Type of Damping			
$\mathrm{S}_{1,2}$		N/A	
ω_{1}		N/A	
$\mathrm{v}_{\mathrm{R}}\left(0^{+}\right)$			
$\mathrm{v}_{\mathrm{R}}(\infty)$			
$i_{L}(t)=i_{R}(t)=i_{L}(\infty)+\left(C_{1} \cos \omega_{d} t+C_{2} \sin \omega_{d} t\right) e^{-\alpha t}$			
$\mathrm{i}_{L}(0)=$			
$\mathrm{C}_{1}=$			
$\begin{gathered} \frac{d i_{L}\left(0^{+}\right)}{d t}=\frac{v_{L}\left(0^{+}\right)}{L}=\left(C_{1} \cos 0+C_{2} \sin 0\right)\left(-\alpha e^{0}\right) \\ +\left(\omega_{d} C_{1} \sin 0+\omega_{d} C_{2} \cos 0\right) e^{0} \end{gathered}$			
$\frac{v_{L,(}\left(0^{+}\right)}{L}=$			
$\mathrm{C}_{1}=\quad \mathrm{C}_{2}=$			
$\mathrm{v}_{\mathrm{R}}(\mathrm{t})$			
$\mathrm{V}_{\mathrm{R}}(0.5 \mathrm{mS})$			
$\mathrm{V}_{\mathrm{R}}(1 \mathrm{mS})$			
$\mathrm{v}_{\mathrm{R}}(2 \mathrm{mS})$			

Table 4 Critically-damped RLC circuit

Quantity	Calculated Value	Measured, Simulated Value(s)
α		N / A
ω_{0}		$\mathrm{~N} / \mathrm{A}$
Type of Damping		
$\mathrm{S}_{1,2}$		$\mathrm{~N} / \mathrm{A}$
ω_{l}		N / A
$\mathrm{v}_{\mathrm{c}}\left(0^{+}\right)$		
$\mathrm{v}_{\mathrm{c}}(\infty)$		

التجربـة السـادسة

Course Contents

Experiment-0: Overview of laboratory equipment's (Digital Multimeters, Function Generators, Oscilloscope)
Experiment-1: Passive Elements.
Experiment-2: Transient Circuits.
Experiment-3: Nonlinear Resistances.
Experiment-4: Passive Filters.
Experiment-5: Resonant Circuits.
Experiment-6: Circuit Theorems.
Experiment-7: Diodes and Applications.
Experiment-8: Special Diodes.
Experiment-9: Bipolar Junction Transistors.
Experiment-10: Logic Gates.
Experiment-11: Power Supplies.

Experiement-4 Objectives

\square To verify the linear circuits theorems: Thévenin's and Norton Theorems, Maximum power transfer, and Superposition.
\square Demonstrate the usefulness of the Thévenin's and Norton theorems to simplify electrical circuits to one that contains three components: a power source, equivalent resistor, and load.

Introduction

\square Circuit Analysis Techniques usually employs either mesh (loop, KVL) method or nodal (KCL) method.

\square However, circuits can be simplified using some useful theorems, which in turns facilitates the analysis.
\square Two important simplification techniques are the:
> Thevenin's Equivalent.
> Norton's Equivalent.

Thévenin's Theorem

\square The theorem was first discovered by German scientist Hermann von Helmholtz in 1853, but was then rediscovered in 1883 by French telegraph engineer Léon Charles Thévenin (1857-1926).
\square Thévenin's theorem states that: any combination of voltage sources and resistors with two terminals is electrically equivalent to a single voltage source V and a single series resistor R.

\square For single frequency AC systems the theorem can also be applied to general impedances, not just resistors.

Thévenin's Theorem: cont’d

Linear circuit is a circuit where the voltage is directly proportional to the current (i.e., Ohm's Law is followed).

Thévenin's Theorem: cont'd

$>$ Identify the load, which may be a resistor or a part of the circuit.
$>$ Remove the load (replace with an open circuit).
$>$ Calculate the voltage, V , over the gap where the load circuit was (V_{OC} or $\mathrm{V}_{\text {Th }}$).
$>$ Turn off all independent voltage and currents sources in the linear 2-terminal circuit (voltage sources with shorts and current sources with open circuits.)
$>$ Calculate the equivalent resistance of the circuit. This is $R_{T h}$.

> The equivalent circuit is a voltage source with voltage $V_{T h}$ in series with a resistance $R_{T h}$ in series with the load.

Thévenin's Theorem: cont'd

Norton's Theorem

A linear two-terminal circuit can be replaced with an equivalent circuit of an ideal current source, I_{N}, in parallel with a resistor, R_{N}. $>\mathrm{I}_{\mathrm{N}}$ is equal to the short-circuit current at the terminals.
$\Rightarrow \mathrm{R}_{\mathrm{N}}$ is the equivalent or input resistance when the independent sources in the linear circuit are turned off

Norton's Theorem: cont'd

$>$ Identify the load (may be a resistor or a part of the circuit).
> Replace the load circuit with a short
$>$ Calculate the current through that short, I, from the original sources.
> Now replace voltage sources with shorts and current sources with open circuits.
$>$ Replace the load circuit with an imaginary ohm meter and measure the total resistance, R, with the sources removed

The equivalent circuit is a current source with current $I_{\text {Norton }}$ in parallel with a resistance $R_{\text {norton }}$ in parallel with the load.

Norton's Theorem: cont'd

Norton's Theorem: cont'd

We recall the following from source transformations.

Thus, for any network for which the Thevenin equivalent is calculated, its Norton equivalent can be obtained using source transformation.

Lab Experiment

- Connect the circuit shown in Fig.2; selecting resistors of $1 / 2$ watt power ratings, and choose the value of R_{L} to be 100Ω.
- Measure the load current.
- Compute VOC, after removing load resistor; Fig.3.
- Compute the short circuit current; ISC, after replacing the load resistor by a short circuit; Fig.4.
- Compute the Thevenin equivalent voltage and resistor:
$V_{T H}=V_{O C}$
$R_{T H}=V_{O C} / I_{S C}$
- Construct the circuit in Fig.5, and compute the load current.
- Compare the two values of the load current.

Lab Experiment

Maximum Power Transfer

\square For any power source, the maximum power transferred from the source to the load is when the resistance of the load R_{L} is equal to the equivalent or input resistance of the power source ($R_{\text {in }}=R_{T h}$ or $\left.R_{N}\right)$.
\square The process used to make R_{L} $=R_{\text {in }}$ is called impedance matching.

$$
\mathbf{R}_{\mathbf{L}}=\mathbf{R}_{\mathrm{Th}}
$$

Maximum Power Transfer: cont'd

- If Z_{L} and $Z_{\text {Th }}$: Resistive

$$
\mathbf{R}_{\mathrm{L}}=\mathbf{R}_{\mathrm{TH}}
$$

] If \mathbf{Z}_{L} or \mathbf{Z}_{TH} : Resistive

$$
\left|Z_{\mathrm{L}}\right|=\left|\mathrm{Z}_{\mathrm{TH}}\right|
$$

- If Z_{L} and $Z_{\text {тн }}$: Matched

$$
\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{TH}}{ }^{*}
$$

] If Z_{L} and $Z_{T H}$ are Complex but not Matched

$$
\left|Z_{\mathrm{L}}\right|=\left|\mathbf{Z}_{\mathrm{TH}}\right|
$$

Lab Experiment

\square Connect the circuit of Fig.6; resistors of 1/2 watt power ratings.
\square Compute V_{OC}, after removing the load resistor; Fig. 7 .
Compute the short circuit current; I_{SC}, after replacing the load resistor by a short circuit; Fig.8.
\square Compute the Thévenin's equivalent voltage and resistor:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{Th}} & =\mathrm{V}_{\mathrm{OC}} \\
\mathrm{R}_{\mathrm{Th}} & =\mathrm{V}_{\mathrm{Th}} /{ }_{\mathrm{ISC}}
\end{aligned}
$$

\square Construct the circuit in Fig.9, compute the load current $\left(I_{L}\right)$; the load voltage $\left(V_{L}\right)$ and hence the load power $\left(P_{L}\right)$:

$$
\mathrm{P}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L}}^{2} \mathrm{R}_{\mathrm{L}}
$$

\square Change the value of the variable resistor, and complete Table.1.
\square Give your comments.

Lab Experiment

Fig. 8 Resistive Circuit: IsC
\square Give your comments.

Superposition Principal

The superposition theorem states that for linear circuits, the total effect of several sources acting simultaneously is equal to the sum of the effects of the individual sources acting one at a time
$>$ Optional Case: When all the sources in the circuit have the same frequency.
> Forced Case: When there exist more than one frequency in the circuit.

Superposition Principal: cont'd

Lab Experiment

- Connect the circuit shown in Fig.10, selecting all resistors to be $1 / 2$ watt ratings; and measure the current through the $2 \mathrm{~K} \Omega$ resistor.
- Remove the source V_{2}; to get the circuit of Fig.11, and measure I_{1}.
- Remove source V_{1}; to get the circuit of Fig.12, and measure I_{2}.
- Compute the overall current through the $2 \mathrm{~K} \Omega$ resistor; using:
$I_{\text {Total }}=I_{1}+I_{2}$
- Compare the two values of the required current.

Lab Experiment

التجربة السـابعة

Course Contents

Experiment-0: Overview of laboratory equipment's (Digital Multimeters, Function Generators, Oscilloscope)
Experiment-1: Passive Elements.
Experiment-2: Transient Circuits.
Experiment-3: Nonlinear Resistances.
Experiment-4: Passive Filters.
Experiment-5: Resonant Circuits.
Experiment-6: Circuit Theorems.
Experiment-7: Semiconductor Diodes and its Applications.
Experiment-8: Special Diodes.
Experiment-9: Bipolar Junction Transistors.
Experiment-10: Logic Gates.
Experiment-11: Power Supplies.

Semic onductor Diodes

A semiconductor diode consists of an n material region and a p material region separated by a PN junction - The n region has many conduction electrons - The p region has many holes

PN Juntion

Depletion Region

Anode (A)
Cathode (K)

Current Direction

Experiement-7 Objectives

\square Verify the current-voltage (I-V) characteristics of a semiconductor diode.
\square Study some diode applications; rectifier and logic circuits

口التعرف على الصمام الثثائي (الموحد) و تحقيق منحنى خو اصه ■تحديد عمل الصمام الثنائي في الدو ائر و إستخداماته في بعض التطبيقات المهمة: توحيد الإشارات المتنيرة.
تشكيل الموجات(Clamping, Clipping)
Logic Gates الدو ائر المنطقية

Most of the materials in the upcoming slides are taken from Dr. M. Abdelazim's ppt slides for Electronic Experiment 1", 2011.

Diodes Characteristics

- Represents the relation between the current and voltage of a PN junction
$>$ Forward biasing $\left(\mathrm{V}_{\mathrm{A}}>\mathrm{V}_{\mathrm{K}}\right)$: exponential

$\rightarrow \mathrm{R}_{\mathrm{ON}} \rightarrow$ Very small resistor
\rightarrow Nearly Short Circuit \rightarrow Large current flows \rightarrow Diode turns on
$>$ Reverse biasing $\left(\mathrm{V}_{\mathrm{A}}<\mathrm{V}_{\mathrm{K}}\right)$: almost a constant value (I_{S})
$\rightarrow \mathrm{R}_{\text {OFF }} \rightarrow$ Very Large Resistor
\rightarrow Nearly Open Circuit
\rightarrow Small leakage current (I_{S}) flows
\rightarrow Diodes is OFF
> Higher reverse biasing:
\rightarrow Eventually, the diode breaks down and conducts high current

Breakdown

Diodes In Forward Biasing

Diodes In Reverse Biasing

Diodes Rating

All the information you will need to know about the Diodes from its data sheet

 data هي مجمو عة البيانات الواجب معرفتّها عن الصمام الثنائي من خلال :sheets

THERMAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Thermal resistance junction to ambient air	$\mathrm{I}=4 \mathrm{~mm}, \mathrm{~T}_{\mathrm{L}}=$ constant	$\mathrm{R}_{\text {that }}$	300	$\mathrm{~K}^{\mathrm{K} / \mathrm{W}}$
Junction temperature		T_{j}	+175	
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-65 to +175	

الشو ائب و علي نوع شبه الموصل .

Diodes Checking: Ohm Function

- If D \rightarrow F.B. \rightarrow Positive @A \& Negative @K $\rightarrow R_{\text {on }} \rightarrow$ Very small resistance.
- If D \rightarrow R.B. \rightarrow Positive @K \& Negative @A
$\rightarrow \mathrm{R}_{\text {off }} \rightarrow$ Very Large resistance.

Diodes Checking: Diode Check Function

- If D \rightarrow F.B. \rightarrow Positive @A \& Negative @K $\rightarrow \mathrm{V}_{\mathrm{F}} \approx 0.65$ for Si and 0.3 for Ge .
- If D \rightarrow R.B. \rightarrow Positive @K \& Negative @A \rightarrow O.C (Displays OL)

Diodes I-V Characteristics

Construct the circuit shown in the next figure, with a resistor of $1 / 2$ watt rating.
\square Connect a multimeter to get the diode current, and another multimeter to get the diode voltage drop.
\square Adjust the DC-supply to get different values of DC volts.
\square Complete all the values to measured.

Diodes Applications: Rectification

> Rectification: Conversion of alternating current (AC) to pulsated direct current (DC).
\rightarrow Allows one-way of electrons flow.
\rightarrow This is exactly what a semiconductor diode does.

Half Wave Rectifier Circuit

Full Wave Rectifier: Center-tap

Center-Tap Full Wave Rectifier : cont'd

> Pesilititreenladil|COycte

Full Wave Rectifier: Bridge

Bridge Full Wave Rectifier: cont'd

> Resilititeenladil|Cyycte

Diodes Applications: Clipping

\square Clipping circuits are used to limit the voltage swing of any signal to a predefined level(s).
\square This can be achieved using diode(s)

$>$ Positive half Cycle
At $V_{\text {in }}<6 \Rightarrow D \Rightarrow R . B . \Rightarrow O . C . ;$ then $V_{0}=V_{\text {in }}$
At $V_{\text {in }}>6 \Rightarrow D \Rightarrow F . B . \Rightarrow S . C . ;$ then $V_{0}=6$
$>$ Negative half Cycle $D \Rightarrow R . B . \Rightarrow O . C . ; V_{0}=V_{i n}$.

Double (Two-level) Clipping

> Positive half Cycle: D1 will do the clipping job
> Negative half Cycle: D2 will do the clipping job

Diodes Applications: Clamping

\square Clamping circuits reproduces the input signal on the output side by shifting it either up or down.
This can be achieved using diode(s)
> Positive half Cycle

D \rightarrow F.B. \rightarrow SC \rightarrow Capacitor will charge up to $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{P}}$
> Negative half Cycle
D \rightarrow R.B. \rightarrow OC \rightarrow Capacitor will be used as a DC-Supply
(DC-Offset) with a small amount od discharge $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {in }}+\mathrm{V}_{\mathrm{C}}$

التجربة التاسعة

Course Contents

Experiment-0: Overview of laboratory equipment's (Digital Multimeters, Function Generators, Oscilloscope)
Experiment-1: Passive Elements.
Experiment-2: Transient Circuits.
Experiment-3: Nonlinear Resistances.
Experiment-4: Passive Filters.
Experiment-5: Resonant Circuits.
Experiment-6: Circuit Theorems.
Experiment-7: Semiconductor Diodes and its Applications.
Experiment-8: Special Diodes.
Experiment-9: Bipolar Junction Transistors.
Experiment-10: Logic Gates.
Experiment-11: Power Supplies.

Experiement-9 Objectives

Transistors are the building block components used in all digital electronics.

- After completing this experiment, the learner will:
> Utilize a bipolar junction transistor (BJT) as a current-controlled current source
> Identify the terminals of a BJT
$>$ Verify V-I (Voltage-Current) characteristics of a typical BJT
$>$ Identify the cutoff, saturation, and active regions over the BJT operating range.

What is a Transistor?

\square A transistor is a device which controls the current flowing between a pair of its terminals by another smaller current
\square Integrated circuit (IC) internally consist of transistors (Core-i7 processor contains ~billion transistors)
\square Transistors can be used for amplification, switching, voltage stabilization, signal modulation and many other functions.

History of Transistor

The First Junction Transistor

First transistor with diffused pn junctions by William Shockley Bell Laboratories, Murray Hill, New Jersey (1949)

Single-crystal Ge

Transistor Amplifier Function

Transistor Amplifier Function

Transistor Amplifier Function

$i_{b}=\mu A$

Current controlled current source

$$
i_{c}=m A
$$

Transistors Types

Transistors Types

Transistors Types

Bipolar J unction Transistor (BJ T)

- 3 Terminals:
- Base
- Collector
- Emitter
- 2 types of BJT:

- NPN.
- PNP.

NPN

BJ T: Configuration

> BJTs are current-controlled devices

$$
I_{E}=I_{B}+I_{C} \quad \ldots(K C L)
$$

BJ T Checking

Bipolar transistors are either NPN or PNP.

\square For purposes of quick testing only, a transistor can be thought of as two back to back diodes.

BJ T Checking: Known Type

\square Using Ohm Function:

Apply the same method used to determine polarity of diode

BJ T: Output Characteristics

BJ T Characteristics: Lab Experiment

BJ T Characteristics: Lab Experiment

1. Connect the circuit in the Figure below.
2. Adjust the variable resistors to provide their minimum values.
3. Adjust the resistance R_{X} to provide $\mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}$.
4. Measure the corresponding collector current and collector-to-emitter voltage drop (at the minimum value of R_{Y}).

BJ T Characteristics: Lab Experiment

5. Begin to increase R_{Y} step-by-step and measure the resulting I_{C} and $V_{C E}$ at fixed I_{B} and fill the first two columns of the measurement Table.

BJ T Characteristics: Lab Experiment

5. Begin to increase R_{Y} step-by-step and measure the resulting I_{C} and $V_{C E}$ at fixed I_{B} and fill the first two columns of the measurement Table.

Table. 2 BJT Output Characteristics

$I_{B}=10 \mu A$		$I_{B}=5 \mu A$		$I_{B}=3 \mu A$		$I_{B}=2 \mu A$	

BJ T Characteristics: Lab Experiment

5. Begin to increase R_{Y} step-by-step and measure the resulting I_{C} and $V_{C E}$ at fixed I_{B} and fill the first two columns of the measurement Table.
6. Readjust the resistor R_{X} to provide $I_{B}=5 \mu A$.
7. Repeat step 5 fill the second next columns of the measurement Table.
8. Repeat until 5 and 6 until all cells of the measurement Table are filled.

Transistors Types

التجربـة العاشرة

Course Contents

Experiment-0: Overview of laboratory equipment's (Digital Multimeters, Function Generators, Oscilloscope)
Experiment-1: Passive Elements.
Experiment-2: Transient Circuits.
Experiment-3: Nonlinear Resistances.
Experiment-4: Passive Filters.
Experiment-5: Resonant Circuits.
Experiment-6: Circuit Theorems.
Experiment-7: Semiconductor Diodes and its Applications.
Experiment-8: Special Diodes.
Experiment-9: Bipolar Junction Transistors.
Experiment-10: Logic Gates.
Experiment-11: Power Supplies.

Experiement-10 Objectives

To experimentally validate standard logic gate functions
\square Implement custom (high current/high power) logic switching functions using diodes and transistors

Logic Gate Families

Logic gate families:
$>$ Diode Resistor Logic (DRL)
> Resistor-Transistor Logic (RTL)
$>$ Diode-Transistor Logic (DTL)
> Transistor-Transistor Logic (TTL)
> Emitter-Coupled Logic (ECL)
> Complementary Metal-Oxide Semiconductors (CMOS)

OR Gate

Truth Table

V_{A}	V_{B}	V_{0}
0	0	0
0	1	1
1	0	1
1	1	1

Truth Table

V_{A}	V_{B}	V_{0}
Low	Low	Low
High	Low	High
Low	High	High
High	High	High

$$
\begin{aligned}
& \text { Low }=0 \text { Volts } \\
& \text { High }=6 \text { volts }
\end{aligned}
$$

OR Gate: cont'd

When $\mathbf{V}_{\mathbf{A}}=$ Low, and $\mathbf{V}_{\mathrm{B}}=$ Low

$$
\begin{aligned}
& D_{1} \Rightarrow \text { R.B. } \Rightarrow \text { O.C. } \\
& D_{2} \Rightarrow \text { R.B. } \Rightarrow \text { O.C. }
\end{aligned}
$$

OR Gate: cont'd

When $V_{A}=$ High, and $V_{B}=$ Low

$$
\begin{aligned}
& D_{1} \Rightarrow \text { F.B. } \Rightarrow \text { S.C. } \\
& D_{2} \Rightarrow \text { R.B. } \Rightarrow \text { O.C. }
\end{aligned}
$$

OR Gate: cont'd

When $V_{A}=$ Low, and $V_{B}=$ High

$$
\begin{aligned}
& D_{1} \Rightarrow \text { R.B. } \Rightarrow \text { O.C. } \\
& D_{2} \Rightarrow F . B . \Rightarrow \text { S.C. }
\end{aligned}
$$

OR Gate: cont'd

When $\mathrm{V}_{\mathrm{A}}=\mathrm{High}$, and $\mathrm{V}_{\mathrm{B}}=$ High

$$
\begin{aligned}
& D_{1} \Rightarrow F . B . \Rightarrow S . C \text {. } \\
& D_{2} \Rightarrow F . B . \Rightarrow \text { S.C. }
\end{aligned}
$$

AND Gate

Truth Table

V_{A}	V_{B}	V_{0}
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table

V_{A}	V_{B}	V_{0}
Low	Low	Low
High	Low	Low
Low	High	Low

AND Gate: cont'd

When $V_{A}=$ Low, and $V_{B}=$ Low:

$$
\begin{aligned}
& D_{1} \Rightarrow F . B . \Rightarrow S . C . \\
& D_{2} \Rightarrow F . B . \Rightarrow S . C .
\end{aligned} \quad V_{0}=\text { Low }
$$

AND Gate: cont'd

When $V_{A}=$ High, and $V_{B}=$ Low

$$
\begin{aligned}
& D_{1} \Rightarrow R . B . \Rightarrow O . C . \\
& D_{2} \Rightarrow F . B . \Rightarrow \text { S.C. }
\end{aligned}
$$

AND Gate: cont'd

When $V_{A}=$ Low, and $V_{B}=H i g h$

$$
\begin{aligned}
& D_{1} \Rightarrow \text { F.B. } \Rightarrow \text { S.C. } \\
& D_{2} \Rightarrow \text { R.B. } \Rightarrow \text { O.C. }
\end{aligned} \quad V_{0}=\text { Low }
$$

AND Gate: cont'd

When $V_{A}=$ High, and $V_{B}=$ High

$$
\begin{aligned}
& D_{1} \Rightarrow \text { R.B. } \Rightarrow \text { O.C. } \\
& D_{2} \Rightarrow \text { R.B. } \Rightarrow \text { O.C. }
\end{aligned}
$$

Transistor-based Logic Gates: NOT Gate

Truth Table

V_{A}	V_{0}
0	1
1	0

NOT Gate: cont'd

NOT Gate: cont'd

Transistor-based Logic Gates: NAND Gate

Truth Table

V_{A}	V_{B}	V_{0}
0	0	1
0	1	1
1	0	1
1	1	0

Truth Table

V_{A}	V_{B}	V_{0}
Low	Low	High
High	Low	High
Low	High	High

Check this link for illustration http://www.falstad.com/circuit/e-rtlnand.htmpl

NAND Gate: cont'd

When $\mathbf{V}_{\mathbf{A}}=$ Low, and $\mathbf{V}_{\mathbf{B}}=$ Low $B J T_{1} \Rightarrow C u t-O F F \Rightarrow O . C$.
$B J T_{2} \Rightarrow C u t-O F F \Rightarrow O . C$.

$$
V_{0}=H i g h=V_{C C}
$$

NAND Gate: cont'd

BJT_{2}
When $\mathbf{V}_{\mathbf{A}}=$ High, and $\mathbf{V}_{\mathbf{B}}=$ Low $B J T_{1} \Rightarrow$ Saturation $\Rightarrow S . C$.

$$
B J T_{2} \Rightarrow C u t-O F F \Rightarrow O . C
$$

In saturation, I_{c} is low and thus the voltage drop across $4.7 \mathrm{~K} \Omega$ is small and V_{0} will be very close to Vcc (i.e., High)

$$
V_{0}=H i g h \quad 20
$$

NAND Gate: cont'd

NAND Gate: cont'd

When $\mathbf{V}_{\mathbf{A}}=$ High, and $\mathbf{V}_{\mathbf{B}}=$ High

$$
\begin{aligned}
& B J T_{1} \Rightarrow O N \Rightarrow S . C . \\
& B J T_{2} \Rightarrow O N \Rightarrow S . C .
\end{aligned}
$$

$$
V_{0}=L o w
$$

Transistor-based Logic Gates: NOR Gate

Truth Table

V_{A}	V_{B}	V_{0}
0	0	1
0	1	0
1	0	0
1	1	0

Truth Table

\mathbf{V}_{A}	V_{B}	V_{0}
Low	Low	High
High	Low	Low
Low	High	Low

High High Low

NOR Gate: cont'd

When $\mathbf{V}_{\mathbf{A}}=$ Low, and $\mathbf{V}_{\mathbf{B}}=$ Low

$$
\begin{aligned}
& B J T_{1} \Rightarrow O F F \Rightarrow O . C . \\
& B J T_{2} \Rightarrow O F F \Rightarrow O . C .
\end{aligned}
$$

NOR Gate: cont'd

When $\mathbf{V}_{\mathbf{A}}=$ High, and $\mathbf{V}_{\mathbf{B}}=$ Low

$$
\begin{aligned}
& B J T_{1} \Rightarrow O N \Rightarrow S . C . \\
& B J T_{2} \Rightarrow O F F \Rightarrow O . C .
\end{aligned}
$$

NOR Gate: cont'd

When $\mathbf{V}_{\mathbf{A}}=$ Low, and $\mathbf{V}_{\mathbf{B}}=$ High

$$
\begin{aligned}
& B J T_{1} \Rightarrow O F F \Rightarrow O . C . \\
& B J T_{2} \Rightarrow O N \Rightarrow S . C .
\end{aligned}
$$

NOR Gate: cont'd

When $\mathbf{V}_{\mathbf{A}}=$ High, and $\mathbf{V}_{\mathbf{B}}=$ High

$$
\begin{aligned}
& B J T_{1} \Rightarrow O N \Rightarrow S . C . \\
& B J T_{2} \Rightarrow O N \Rightarrow S . C .
\end{aligned}
$$

Q. 1 For the circuit shown in Fig.1:

1. The current I is:

The voltage V is:
2. The power absorbed by the $4 \mathrm{~K} \Omega$ is:
3. The power supplied by 9 V is:

What are the minimum power rating required resistors?
4. The ratio of the power absorbed by $4 \mathrm{~K} \Omega$ to the power absorbed by the $8 \mathrm{~K} \Omega$ is:
5. The voltage drop across $4 \mathrm{~K} \Omega$ and $8 \mathrm{~K} \Omega$ resistors equals:
6. What will happen, when the $8 \mathrm{~K} \Omega$ resistor becomes short circuited:

Q. 2 For the circuit shown in Fig. 2:

1. The current I is:
2. The voltage V_{1} is: \qquad
3. The voltage V_{2} :
4. The capacitor charge is:
5. What is the minimum voltage rating of the required capacitor:
6. What is the minimum required power rating of the resistor:
7. If the dc source is replaced by a square wave of $\mathrm{V}_{\mathrm{pp}}=9 \mathrm{~V}$, then the capacitor current will be:
8. If the capacitor is replaced by an inductor of 1 mH , then $\mathrm{I}, \mathrm{V}_{1}$, and V_{2} will be:

Fig. 1

Fig. 2

Q. 1 For the circuit shown in Fig. 1:

1. If the switch S is placed at "a" for a long time; find $\mathrm{I}_{1}, \mathrm{I}_{2}$, and V :
2. Roughly, draw the variation of V as a function of time:
3. If the switch S is moved to " b "; find the instantaneous values of $\mathrm{I}_{1}, \mathrm{I}_{2}$, and V :
4. A long time after S has been moved to " b "; find the steady state value of $\mathrm{V}, \mathrm{I}_{2}$, and I_{1} :
5. If the resistor R_{2} is replaced by a short circuit, what will happen in the two cases of the switch S ?

Q. 2 For the circuit shown in Fig. 2:

1. If the switch S is placed at "a" for a long time; find I_{1}, I_{2}, and V :
2. Roughly, draw the variation of V as a function of time:
3. If the switch S is moved to b; find the instantaneous values of I_{1}, I_{2}, and V :
4. A long time after S has been moved to " b "; find the steady state value of $\mathrm{V}, \mathrm{I}_{2}$, and I_{1} :
5. If the resistor R_{2} is replaced by a short circuit, what will happen in the two cases of the switch S ?

Fig. 1

Fig. 2

Q. 1 For the circuit shown in Fig. 1

1. If $V_{x}=1 / I+1$, find the value of R if the voltage drop across R is the same as V_{x} : \qquad
2. For the above case find the power dissipated in the nonlinear element:
3. Determine the static resistance of the nonlinear element:
4. If $\mathrm{R}=0.5 \Omega$, find the current I , and the voltage drop across resistor R :
5. If the nonlinear element is replaced by a capacitor, what is the minimum rated voltage?
6. If R equals $1 \mathrm{~K} \Omega$, and the nonlinear element is replaced by a short circuit, what is the minimum rated power of that resistor:

Q. 2 For the circuit shown in Fig. 2:

1. If $V=1 / I_{x}+1$, find the value of R if the current through R is the same as the current I_{x} :
2. For the above case find the power dissipated in the nonlinear element:
3. Determine the static resistance of the nonlinear element:
4. If $\mathrm{R}=0.5 \Omega$, find the current I_{x}, and the voltage drop:
5. If the nonlinear element is replaced by a capacitor, what is the minimum rated voltage?
6. If the $\mathrm{R}=1 \mathrm{~K} \Omega$, and the nonlinear element is replaced by a short circuit, what is the minimum rated power of that resistor:

Fig. 1

Fig. 2

Q. 1 For the circuit shown in Fig. 1:

1. The maximum output voltages is:
2. The cutoff frequency is given by:
3. The maximum output voltage occurs at a frequency of:
4. The minimum output voltage occurs at a frequency of:
5. The bandwidth is given by:
Q. 2 If the positions of resistor R and capacitor C; Fig. 1, changed:
6. The maximum output voltages is:
7. The cutoff frequency is given by:
8. The maximum output voltage occurs at a frequency of:
9. The minimum output voltage occurs at a frequency of:
10. The bandwidth is given by:
Q. 3 For the circuit shown in Fig. 2:
11. The maximum output voltages is:
12. The cutoff frequency is given by:
13. The maximum output voltage occurs at a frequency of:
14. The minimum output voltage occurs at a frequency of:
15. The bandwidth is given by:

Fig. 1

Fig. 2

Q. 1 For the circuit shown in Fig. 1:

1. Find the resonant frequency:
2. Find the minimum impedance:
3. Find two expressions for the quality factor:
4. Find the circuit bandwidth:
5. Find the maximum current through the circuit:
6. Find the voltage drop across the capacitor at resonance:
7. Find the voltage drop across the inductor at resonance:
8. Draw a schematic diagram of the output current vs. frequency:
Q. 2 For the circuit shown in Fig.2:
9. Find the resonant frequency:
10. Find the minimum impedance:
11. Find two expressions for the quality factor:
12. Find the maximum voltage drop across the circuit:
13. Find the overall bandwidth:
14. Find the maximum current through the inductor:
15. Find the maximum current through the capacitor:

Fig. 2

Q. 1 For the circuit shown in Fig. 1:

1. Find Thevenin's equivalent:
2. Find the resistive load to be connected between x and y for maximum power:
3. Find the maximum power delivered to the load in case-2:
4. Find the ratio of the maximum delivered power to the load with respect to the source:
5. If a load of 1Ω is connected between x and y find the load power and give your comments:
6. Find Norton's equivalent: \qquad

Q. 2 For the circuit shown in Fig.2:

1. Find the current passing through the 1Ω resistor:
2. If the positions of the two sources are exchanged, what is the current through the 1Ω resistor:
3. Using superposition principle; find the current passing through the 1Ω resistor in the original circuit:
4. If the 1Ω resistor is open circuited, find the equivalent resistance between its terminals:
5. If the 2 A source is replaced by a 2 V source, and the 1Ω resistor is open circuited, find the equivalent resistance between its terminals:

Fig. 1

Fig. 2

Q. 1 For the circuit shown in Fig. 1:

1. If $\mathrm{V}_{\mathrm{in}}=10 \mathrm{~V}$, and a Silicon diode was used, find the current passing through the $4 \mathrm{k} \Omega$ load resistor:
2. If $\mathrm{V}_{\mathrm{in}}=-10 \mathrm{~V}$, and a Germanium diode was used, find the current passing through the $4 \mathrm{k} \Omega$ load resistor:
3. If $\mathrm{V}_{\mathrm{in}}=10 \operatorname{Sin}(\omega \mathrm{t}) \mathrm{V}$, and a Silicon diode was used, find the current passing through the $4 \mathrm{k} \Omega$ load resistor, and then draw the output voltage:
4. If V_{in} is a symmetric square wave of peak-to-peak 10 V , and a Germanium diode was used, find the current passing through the load resistor and hence sketch the output voltage:

Q. 2 For the circuit shown in Fig.2:

1. If $V_{1}=0 \mathrm{~V}$ and $\mathrm{V}_{2}=0 \mathrm{~V}$, find V_{0} :
2. If $V_{1}=10 \mathrm{~V}$ and $\mathrm{V}_{2}=0 \mathrm{~V}$, find V_{0} :
3. If $V_{1}=0 \mathrm{~V}$ and $\mathrm{V}_{2}=10 \mathrm{~V}$, find V_{0} :
4. If $\mathrm{V}_{1}=10 \mathrm{~V}$ and $\mathrm{V}_{2}=10 \mathrm{~V}$, find V_{0} :
5. If $\mathrm{V}_{1}=-10 \mathrm{~V}$ and $\mathrm{V}_{2}=10 \mathrm{~V}$, find V_{0} :
6. If $\mathrm{V}_{1}=5 \mathrm{~V}$ and $\mathrm{V}_{2}=5 \mathrm{~V}, \mathrm{D}_{1}$ is a Silicon diode and D_{2} is a Germanium diode, find V_{0} :

Q. 1 For the circuit shown in Fig. 1:

1. If $\mathrm{V}_{\text {in }}=10 \mathrm{~V}$ and $\mathrm{P}_{\mathrm{Z}}(\max)=0.05 \mathrm{Watt}$, find V_{0} :
2. If $V_{i n}=20 \mathrm{~V}$ and $\mathrm{P}_{\mathrm{Z}}(\max)=0.05$ Watt, find V_{0} :
3. If $\mathrm{V}_{\mathrm{in}}=30 \mathrm{~V}$ and $\mathrm{P}_{\mathrm{Z}}(\max)=0.05$ Watt, find V_{0} :
4. If $\mathrm{V}_{\mathrm{in}}=-10 \mathrm{~V}$ and $\mathrm{P}_{\mathrm{Z}}(\max)=0.05$ Watt, find V_{o} :
5. If $12 \leq \mathrm{V}_{\text {in }} \leq 20 \mathrm{~V}$ and $\mathrm{P}_{\mathrm{Z}}(\max)=0.05$ Watt, find the change in V_{0} :
6. If $\mathrm{V}_{\text {in }}=10 \operatorname{Sin}(\omega \mathrm{t}) \mathrm{V}$, sketch the output waveform:
Q. 2 For the circuit shown in Fig. 2 the LED diode has a forward voltage drop of 3.2 V (i.e. during conduction)
7. If $\mathrm{V}_{1}=0 \mathrm{~V}$ and $\mathrm{V} 2=0 \mathrm{~V}$, find V_{0} :
8. If $\mathrm{V}_{1}=10 \mathrm{~V}$ and $\mathrm{V} 2=0 \mathrm{~V}$, find V_{0} :
9. If $\mathrm{V}_{1}=0 \mathrm{~V}$ and $\mathrm{V} 2=10 \mathrm{~V}$, find V_{0} :
10. If $V_{1}=10 \mathrm{~V}$ and $\mathrm{V}_{2}=10 \mathrm{~V}$, find V_{0} :
11. If $\mathrm{V}_{1}=-10 \mathrm{~V}$ and $\mathrm{V} 2=10 \mathrm{~V}$, find V_{0} :
12. If $\mathrm{V}_{1}=0 \mathrm{~V}$ and $\mathrm{V} 2=-10 \mathrm{~V}$, find V_{0} :

Fig. 1

Fig. 2

Q. 1 For the circuit shown in Fig. 1:

1. If $\mathrm{V}_{\mathrm{EB}}=0.7 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{CB}}=0.5 \mathrm{~V}$, determine the BJT operating mode:
2. If $\mathrm{V}_{\mathrm{EB}}=-0.7 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{CB}}=-0.5 \mathrm{~V}$, determine the BJT operating mode:
3. If $\mathrm{V}_{\mathrm{EB}}=0.7 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{CB}}=-0.5 \mathrm{~V}$, Determine the BJT operating mode:

Q. 2 For the circuit shown in Fig. 2:

4. If $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{BC}}=-0.5 \mathrm{~V}$, Determine the BJT operating mode:
5. If $\mathrm{V}_{\mathrm{EB}}=-0.7 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{CB}}=-0.5 \mathrm{~V}$, Determine the BJT operating mode:
6. If $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{BC}}=-0.5 \mathrm{~V}$, Determine the BJT operating mode:

Q. 3 For the circuit shown in Fig.3:

1. If $\mathrm{V}_{\mathrm{CE}}=2.5 \mathrm{~V}$, Determine the BJT operating mode:
2. If $\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}} \mathrm{V}$, Determine the BJT operating mode:
3. If $\mathrm{V}_{\mathrm{CE}}=0.05 \mathrm{~V}$, Determine the BJT operating mode:
4. If $\mathrm{V}_{\mathrm{CE}}=0.2 \mathrm{~V}$, Determine the BJT operating mode:
5. If $\mathrm{V}_{\mathrm{B}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{E}}=2.3 \mathrm{~V}$, Determine the BJT operating mode:
6. If $\mathrm{V}_{\mathrm{B}}=-3 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=10 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}$, Determine the BJT operating mode:

Fig. 1

Fig. 2

Fig. 3
Q. 1 For the circuit shown in Fig. 1:

1. If $V_{1}=10 \mathrm{~V}$ and $\mathrm{V}_{2}=10 \mathrm{~V}$, find V_{0} : \qquad
2. If $V_{1}=0 \mathrm{~V}$ and $\mathrm{V}_{2}=10 \mathrm{~V}$, find V_{0} : \qquad
3. If $V_{1}=10 \mathrm{~V}$ and $\mathrm{V}_{2}=0 \mathrm{~V}$, find V_{0} : \qquad
4. If $V_{1}=0 \mathrm{~V}$ and $V_{2}=0 \mathrm{~V}$, find V_{0} :
Q. 2 For the circuit shown in Fig. 2:
5. If $V_{1}=10 \mathrm{~V}$ and $V_{2}=10 \mathrm{~V}$, find V_{0} : \qquad
6. If $V_{1}=0 \mathrm{~V}$ and $V_{2}=10 \mathrm{~V}$, find V_{0} : \qquad
7. If $V_{1}=10 \mathrm{~V}$ and $V_{2}=0 \mathrm{~V}$, find V_{0} : \qquad
8. If $V_{1}=0 \mathrm{~V}$ and $V_{2}=0 \mathrm{~V}$, find V_{0} :
Q. 3 For the circuit shown in Fig. 3:
9. If $V_{1}=10 \mathrm{~V}$ and $V_{2}=10 \mathrm{~V}$, find V_{0} : \qquad
10. If $V_{1}=0 \mathrm{~V}$ and $V_{2}=10 \mathrm{~V}$, find V_{0} : \qquad
11. If $V_{1}=10 \mathrm{~V}$ and $V_{2}=0 \mathrm{~V}$, find V_{0} : \qquad
12. If $V_{1}=0 \mathrm{~V}$ and $\mathrm{V}_{2}=0 \mathrm{~V}$, find V_{0} :

Q. 1 Define the following terms:

1. Stabilized power supply:
2. Smoothing circuit(s):
3. Voltage regulators:
4. The voltage regulator series of type 78 xy :
5. The voltage regulator series of type 79 xy :
6. Unipolar voltage supplies:
7. Voltage rating of a capacitor:
8. Power rating of a resistor:
9. Maximum forward current of a general purpose diode:
10.Maximum power dissipation of a Zener diode:
11.Peak inverse voltage of a diode:

Q. 2 Specify the following items:

1. Rating parameters of a semiconductor diode:
2. Rating parameters of a BJT:
3. Rating parameters of a Zener diode:
4. Rating parameters of a light emitting diode (LED):
