

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Structural Engineering Department
Department Responsible for the Course	Structural Engineering Department
Course Code	ENG244
Year/ Level	Second year - First Semester
Specialization	Major
Authorization data of course specification	December 2020

Taashing Hours	Lectures	Tutorial	Practical
reaching hours	2	1	-

2. Course aims:

No.	Aim	
3	Develop the field of construction engineering; to meet the required needs of	
	the market with considering the impacts on society and environment.	

3. Learning Outcomes (LOs):

A3.1	Apply engineering design using appropriate building materials and construction method to
	produce cost-effective solutions
A3.2	Apply sustainable design of insulation layers, floors and stairs rain water
A4.1	Utilize contemporary technologies of architectural drawings for buildings.
A4.2	Utilize codes of practice, and standards of building materials, finishing materials and
	equipment used
A4.3	Utilize risk management principles of implementation of various stages of construction
	processes theoretically and field sites.

No.	Topics	week
1	Building and Construction Materials (Stone, Brick, Concrete, Iron)	1
2	Architectural and Structural Symbols and Terms	2
3	Buildings Types (Structural - Walls) and Construction Methods of All Types and	3-4
	Structural Elements.	
4	Insulation Layers, Floors and Stairs Rain water	5-6
5	Building materials, finishing materials and equipment used.	7-9
6	Applications with the implementation of simplified architectural drawings for	10-12
	buildings	
7	Introduction to installations and sanitary extensions of the building	13

8	Study the method of implementation of various stages of construction processes	14
	theoretically and field sites.	

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

The state of the second s		
No.	Assessment Method	LOs
1	Mid Term Examination	A3.1, A3.2, A4.2
2	Semester work (Quizzes, presentation, Portfolio)	A4.1, A4.3
3	Final Term Examination	A3.1, A3.2, A4.1, A4.2, A4.3

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	20%
2	Semester work (Quizzes, presentation, Portfolio)	13%
3	Final Term Examination	67 %
Total		100 %

8. List of References

No.	Reference List
1	Arthur Lyons, Materials for Architects and Builders, Routledge, 2019.
2	James Douglas, Bill Ransom, Understanding Building Failures, Routledge, 2013.

3	Stephen C. Plotner, RSMeans Building Construction Cost Data, John W, 2015.			
4	NIKOLAS, Davies & JOKINIEMI, Erkki, Dictionary of Architecture and Building construction, 1st Edition. 2008.			

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No	Торіс	aim	LO's
1	Building and Construction Materials (Stone,	3	A3.1, A4.2
	Brick, Concrete, Iron)	5	
2	Architectural and Structural Symbols and	3	A4.2
	Terms		
3	Buildings Types (Structural - Walls) and	3	A3.1, A4.2
	Construction Methods of All Types and		
	Structural Elements.		
4	Insulation Layers, Floors and Stairs Rain	3	A3.2
	water		
5	Building materials, finishing materials and	3	A3.1, A4.2
	equipment used.		
6	Applications with the implementation of	3	A4.1
	simplified architectural drawings for		
	buildings		
7	Introduction to installations and sanitary	3	A3.1
	extensions of the building		
8	Study the method of implementation of	3	A4.2, A4.3
	various stages of construction processes		
	theoretically and field sites.		

Course Coordinator: Prof. Dr/

Head of Department: Prof. Dr/ Ahmed Mahmoud Youssif Mohamed

Date of Approval: December 2019

Course: Building Construction			
Program LOs	Course LOs		
A3. Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts	A3.1- Apply engineering design using appropriate building materials and construction method to produce cost- effective solutions		
of sustainable design and development.	A3.2- Apply sustainable design of insulation layers, floors and stairs rain water		
A4. Utilize contemporary technologies, codes of practice, and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	A4.1- Utilize contemporary technologies of architectural drawings for buildings.		
	A4.2- Utilize codes of practice, and standards of building materials, finishing materials and equipment used.		
	A4.3- Utilize risk management principles of implementation of various stages of construction processes theoretically and field sites.		

1. Basic Information

Program Title	Civil Engineering Program	
Department offering the Program	Structural Engineering Department	
Department Responsible for the Course	Structural Engineering Department	
Course Code	STE221	
Year/ Level	Second year	
Specialization	Major	
Authorization data of course specification		

Taashing Hours	Lectures	Tutorial	Practical
reaching nours	4	1	1

2. Course aims:

No.	Aim
4	Accommodate contemporary civil engineering material which is concrete and
	engage in self- and lifelong learning

3. Learning Outcomes (LOs):

B1.1.	select appropriate concrete mixture for construction of building and infrastructure	
B1.2.	use physical measurements and testing in the engineering concepts of properties of concrete	
B2.1.	using the properties and strength of concrete in design	
B2.2.	Achieve the optimum design of reinforced concrete structures, foundations and earth	
	retaining structures, also of road and airports sanitary works, irrigation, water resources and	
	harbors	
B3.1	ensure the quality of civil engineering constructions	

No.	Topics	week
1	Properties of fresh concrete: workability, cohesion, segregation and bleeding	1-2
	Laboratory: Standard tests for fresh and hardened concrete.	
2	Properties of hardened concrete: (compressive, tensile, flexural, shear, and bond	3-4
	strengths)	
	Laboratory: Standard tests for fresh and hardened concrete.	
3	Volumetric changes of concrete (shrinkage, creep)	5-6
4	Durability of concrete (carbonation, corrosion process, permeability) - Concrete	7-10
	mix design methods	
5	Non-destructive testing: (rebound hammer, ultrasonic, pulse velocity, core, steel	11
	detection.)	
6	Special types of concrete: (high performance, polymer, fiber and lightweight	12-13
	concrete).	

7 Admixtures (chemical admixtures, mineral admixtures, air entrained admixtures) 14-15

5. Teaching and Learning Methods:

No.	Teaching Method	
1	Interactive lectures (hybrid learning)	
2	Discussion Sessions	
3	Flipped classroom	
4	Practical	

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	Los
1	Mid Term Examination	B1.1, B1.2, B2.1,
2	Semester work (Quizzes, presentation, Portfolio)	B1.1, B1.2, B2.1, B3.1
3	Final Term Examination	B1.1, B1.2, B2.1, B3.1
4	Practical Examination	B2.2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	Weekly
3	Practical Examination	14
4	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	5.71%
2	Semester work (Quizzes, presentation, Portfolio)	20%
3	Final Term Examination	68.6%
4	Practical Examination	5.71%
Total		100 %

8. List of References

No.	Reference List
1	Neville, A.M., "Properties of Concrete", Longman, 5 th ed., 2010

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

Торіс	Aim	LO's
Properties of fresh concrete: workability,		
cohesion, segregation and bleeding	4	B1 1 B1 2 B3 1
Laboratory: Standard tests for fresh and		51.1, 51.2, 56.1
hardened concrete.		
Properties of hardened concrete:	4	B1.1, B1.2, B2.1, B2.2
(compressive, tensile, flexural, shear, and		
bond strengths)		
Laboratory: Standard tests for fresh and		
hardened concrete.		
Volumetric changes of concrete (shrinkage,	4	B2.1, B2.2
creep)		
Durability of concrete (carbonation, corrosion	4	B1.1, B3.1
process, permeability) - Concrete mix design		
methods		
Non-destructive testing: (rebound hammer,	4	B3.1
ultrasonic, pulse velocity, core, steel		
detection.)		
	TopicProperties of fresh concrete: workability, cohesion, segregation and bleeding Laboratory: Standard tests for fresh and hardened concrete.Properties of hardened concrete: (compressive, tensile, flexural, shear, and bond strengths) Laboratory: Standard tests for fresh and hardened concrete.Volumetric changes of concrete (shrinkage, creep)Durability of concrete (carbonation, corrosion process, permeability) - Concrete mix design methodsNon-destructive testing: (rebound hammer, ultrasonic, pulse velocity, core, steel detection.)	TopicAimProperties of fresh concrete: workability, cohesion, segregation and bleeding Laboratory: Standard tests for fresh and hardened concrete.4Propertiesof hardened concrete:4(compressive, tensile, flexural, shear, and bond strengths)4Laboratory: Standard tests for fresh and hardened concrete.4Volumetric changes of concrete (shrinkage, creep)4Durability of concrete (carbonation, corrosion methods4Non-destructive testing: (rebound hammer, ultrasonic, pulse velocity, core, steel detection.)4

6	Special types of concrete: (high performance,	4	B1.1, B1.2, B3.1
	polymer, fiber and lightweight concrete).		
7	Admixtures (chemical admixtures, mineral	4	B1.1, B1.2, B3.1
	admixtures, air entrained admixtures)		

Course Coordinator: Prof. Dr. Mohammed Yousry El-Sheikh

Head of Department: Prof. Dr. Ahmed Mahmoud Yousef

Date of Approval: September 2021

Course: Plane Survey		
Program Los	Course Los	
B1. Select appropriate and sustainable technologies for construction of buildings and infrastructures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of: Structural Analysis and Mechanics, Properties and Strength of Materials, Surveying, Soil Mechanics, Hydrology and Fluid Mechanics.	B1.1. select appropriate concrete mixture for construction of building and infrastructureB1.2. use physical measurements and testing in the engineering concepts of properties of concrete	
B2. Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.	 B2.1. use the properties and strength of concrete in design B2.2. Achieve the optimum design of reinforced concrete structures, foundations and earth retaining structures, also of road and airports sanitary works, irrigation, water resources and harbors 	
B3. Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess environmental impacts of projects.	B3.1 ensure the quality of civil engineering constructions	

1. Basic Information		
Program Title	Civil Engineering Program	
Department offering the Program	Irrigation and Hydraulics Dept.	
Department Responsible for the Course	Irrigation and Hydraulics Dept.	
Course Code	IRH 211	
Year/ Level	Second Year- Second Semester	
Specialization	Major	
Authorization data of course specification		

Tooching Hours	Lectures	Tutorial	Practical
Teaching Hours	2	2	-

2. Course aims:

No.	Aim
1	Master a wide range of hydraulics and hydrology knowledge, techniques and skills to use them
1	in irrigation and drainage projects.

3. Learning Outcomes (LOs):

No.	LOs
B1.1	Apply a full range of civil engineering concepts and techniques of hydrology and fluid Mechanics to solve irrigation and drainage problems.
B1.2	Select appropriate and sustainable technologies for construction of irrigation and drainage projects.
B2.1	Achieve an optimum design for Irrigation and drainage networks.

No.	Topics	
1	Introduction to Irrigation and Drainage Engineering.	W1
2	Soil, Water and Plants Relationships	W2
3	Water Requirements of Plants	W3
4	Irrigation Methods and Rotations	W4
5	Planning and Design of Canals and Drains Networks.	W5, W6,
6	Sprinkler and Drip Irrigation Systems	W7, W9
7	Open and Subsurface Drainage	W10, W11
8	Overview of Environmental Sustainability of Irrigation Systems	W12, W13
9	Introduction to the Environmental Impact Assessment of Irrigation and Drainage	W14
	Projects	

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method
1	Additional Tutorials
2	Online lectures and assignments

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Mid Term Examination	B1.1, B1.2
2	Semester work (Quizzes, presentation, Portfolio)	B1.1, B1.2, B2.1
3	Oral Examination	B1.1, B1.2
4	Final Term Examination	B1.1, B1.2, B2.1

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Oral Examination	14
4	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	15 %
2	Semester work (Quizzes, presentation, Portfolio)	15 %
3	Oral Examination	10 %
4	Final Term Examination	60 %
Total 100 %		100 %

8. List of References

No.	Reference List
1	Omran, El-Sayed E., and Abdelazim M. Negm, eds. "Technological and Modern Irrigation
	Environment in Egypt: Best Management Practices & Evaluation." Springer Nature, 2020.
2	Chaudhry, S. and Garg, Sh. "Smart Irrigation Techniques for Water Resource Management". IGI
	Global Publisher of Timely Knowledge, 2019
3	Waller, Peter, and Muluneh Yitayew. "Irrigation and drainage engineering", Springer, 2016.
4	Biswas, Ranajit Kumar. "Drip and Sprinkler Irrigation." New Delhi, New India Publishing
	Agency, 2015.

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No.	Торіс	aim	LO's
1	Introduction to Irrigation and Drainage Engineering.	1	B1.1
2	Soil, Water and Plants Relationships	1	B1.1
3	Water Requirements of Plants	1	B1.1
4	Irrigation Methods and Rotations	1	B1.1, B1.2
5	Planning and Design of Canals and Drains Networks.	1	B1.1, B1.2, B2.1
6	Sprinkler and Drip Irrigation Systems	1	B1.1, B1.2, B2.1
7	Open and Subsurface Drainage	1	B1.1, B1.2, B2.1
8	Overview of Environmental Sustainability of Irrigation Systems	1	B1.1
9	Introduction to the Environmental Impact Assessment of	1	B1.1
	Irrigation and Drainage Projects	T	

Course Coordinator: Dr. Ahmad Mohammad Sedki Elhamrawy.

Head of Department: Assoc. Prof. Dr. Tharwat Eid Sarhan.

Date of Approval: / /2021

Course: Irrigation and drainage engineering		
Program LOs	Course LOs	
B1. Select appropriate and sustainable technologies	B1.1 Apply a full range of civil engineering	
for construction of buildings and infrastructures;	concepts and techniques of hydrology and fluid	
using either numerical techniques or physical	Mechanics to solve irrigation and drainage	
measurements and/or testing by applying a full	problems.	
range of civil engineering concepts and techniques		
of: Structural Analysis and Mechanics, Properties	B1.2 Select appropriate and sustainable	
and Strength of Materials, Surveying, Soil	technologies for construction of irrigation and	
Mechanics, Hydrology and Fluid Mechanics.	drainage projects.	
B2. Achieve an optimum design of Reinforced	B2.1 Achieve an optimum design for Irrigation and	
Concrete and Steel Structures, Foundations and	drainage networks.	
Earth Retaining Structures; and at least three of the		
following civil engineering topics: Transportation		
and Traffic, Roadways and Airports, Railways,		
Sanitary Works, Irrigation, Water Resources and		
Harbors; or any other emerging field relevant to the		
discipline.		

1. Basic Information		
Program Title	Civil Engineering Program	
Department offering the Program	Irrigation and Hydraulics Dept.	
Department Responsible for the Course	Irrigation and Hydraulics Dept.	
Course Code	IRH 221	
Year/ Level	Second Year-First Semester	
Specialization	Major	
Authorization data of course specification		

Teaching Hours	Lectures	Tutorial	Practical
Teaching Hours	2	1	-

2. Course aims:

No.	Aim
1	Master a wide range of Hydrological knowledge, techniques and skills to use them to solve
T	Hydrology problems.

3. Learning Outcomes (LOs):

No.	LOs
B1 1	Apply a full range of hydrological concepts to analyze hydrologic processes and calculate
D1.1	Hydrological losses.
B1 2	Select sustainable technologies to guide and remediate floods and Regulating equations of
D1.2	surface flow.
B3.1	Plan the simulation of hydrological phenomena, ground water hydrology and storage in rivers.
B3.2	Manage interference of saline water in coastal areas and applications in both surface and
	groundwater flows.

No.	Topics	
1	Introduction to engineering hydrology - Units of measurement - Description, measurement,	W1 W2
1	and analysis of hydrologic processes.	VV 1, VV 2
2	Definition of hydrological cycle - Precipitation and types - Hydrological losses and methods	W/2
2	of measurement.	VV J
3	3 Definition of evaporation, transpiration and cold - Regulating equations of surface flow. W	
4	4 Drawing and analysis of water curves - Guidance and remediation of floods.	
5	Groundwater hydrology - Groundwater in Egypt - Examples and case studies.	
6	Introduction to hydrological simulation - Design of aquifers - Calculation of storage in	W10 W11
0	rivers.	vv 10, vv 11
7	7 Interference of saline water in coastal areas, (Salt water intrusion).	
8	Nile river hydrology – Case studies and applications in both surface and groundwater	W13 W14
0	flows.	W13, W14

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Mid Term Examination	B1.1, B1.2
2	Semester work (Quizzes, presentation, Portfolio)	B3.1
3	Oral Examination	B1.1, B3.1
4	Final Term Examination	B1.1, B1.2, B3.1, B3.2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Oral Examination	14
4	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	10 %
2	Semester work (Quizzes, presentation, Portfolio)	10 %
3	Oral Examination	20 %
4	Final Term Examination	60 %
	Total	100 %

8. List of References

No.	Reference List	
1	Elsalmian, S. "Handbook of Engineering Hydrology: Environmental Hydrology and Water	
1	Management (1st Ed.)". ISBN: 9781466552494, CRC Press, 2014.	
2	Warren Viessman, Jr. and Gary L. Lewis. "Introduction to Hydrology (5th International	
2	Edition)". ISBN-13: 978-0132763608, Pearson Education, 2011.	
Subramanya, K. "Engineering Hydrology (3rd edition)". ISBN-13: 978-0070151468,		
3	Hill Education, 2009	

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No.	Торіс	aim	LO's
1	Introduction to engineering hydrology - Units of measurement - Description, measurement, and analysis of hydrologic processes.	1	B1.1
2	Definition of hydrological cycle - Precipitation and types - Hydrological losses and methods of measurement.	1	B1.1
3	Definition of evaporation, transpiration and cold - Regulating equations of surface flow.	1	B1.2, B3.1
4	Drawing and analysis of water curves - Guidance and remediation of floods.	1	B1.2, B3.1
5	Groundwater hydrology - Groundwater in Egypt - Examples and case studies.	1	B3.1
6	Introduction to hydrological simulation - Design of aquifers - Calculation of storage in rivers.	1	B3.1
7	Interference of saline water in coastal areas, (Salt water intrusion).	1	B3.2
8	Nile river hydrology – Case studies and applications in both surface and groundwater flows.	1	B3.1, B3.2

Course Coordinator: Assoc. Prof. Dr. Hossam Abd-Elaziz.

ypluc, P

Head of Department: Assoc. Prof. Dr. Tharwat Eid Sarhan.

Date of Approval: / /2021

Course: H	Iydrology	
Program LOs	Course LOs	
B1. Select appropriate and sustainable technologies	B1.1 Apply a full range of hydrological concepts to	
for construction of buildings and infrastructures;	analyze hydrologic processes and calculate	
using either numerical techniques or physical	Hydrological losses.	
measurements and/or testing by applying a full		
range of civil engineering concepts and techniques	B1.2 Select sustainable technologies to guide and	
of: Structural Analysis and Mechanics, Properties	remediate floods and regulating equations of	
and Strength of Materials, Surveying, Soil	surface flow.	
Mechanics, Hydrology and Fluid Mechanics.		
B3. Plan and manage construction processes;	B3.1 Plan the simulation of hydrological	
address construction defects, instability, and quality	phenomena, ground water hydrology and storage in	
issues; maintain safety measures in construction	rivers.	
and materials; and assess environmental impacts of		
Projects.	B3.2 Manage interference of saline water in coastal	
	areas and applications in both surface and	
	groundwater flows.	

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Public Works Department
Department Responsible for the Course	Public Works Department
Course Code	PWE 211
Year/ Level	Second Year-First Semester
Specialization	Major
Authorization data of course specification	

Toophing Hours	Lectures	Tutorial	Practical
reaching nours	4	1	2

2. Course aims:

No.	Aim
1	Master a wide range of Topographic Surveying & Geodesy techniques to use them in civil engineering projects

3. Learning Outcomes (LOs):

B1.1	Select geodetic and topographic problem using MATLAB
B1.2	Select appropriate ICT tools to a variety of geodetic engineering problems
B3.1	Manage the design system of tunnels and excavations using Theodolite and Total station
	observation.
B3.2	Plan solutions to engineering problems, often based on limited and possibly contradictory
	information

No.	Topics	week
1	Map projection, transformation of coordinates	1
2	geodesy, geometric geodesy	2
3	triangulation, adjustment of traverse net using bebbov method, strength of	3
	triangulation.	
4	Observations, data corrections and reductions. (Theodolite Applications	4
5	Reduction of observations to the ellipsoid and Reduction from the ellipsoid to the	5
	projection plane	
6	Total Station Measurement and Analysis of observations. (Total Station	6
	Applications)	
7	Network adjustment and Analysis of adjustment. Principle of GIS, Least square	7
	theory using condition equation method and parametric method	
8	Route Surveying: Horizontal And Vertical Curves	9
9	Shape of Earth Surface, Historic Development, Geoid, Reference Ellipsoid and	10
	Spheroid, Coordinate Systems, Datum	

10	. GNSS, traverse Network adjustment and Analysis of adjustment.	11
11	Theory of errors, equal weight, un equal weight and error propagation	12-13
12	Principle of photogrammetry, Principle of remote sensing.	14

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom
4	Practical

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method
1	Additional Tutorials
2	Online lectures and assignments

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Semester work (Quizzes, presentation, Portfolio)	B1.1 B1.2
2	Practical	B3.1
3	Oral	B1.1 B3.2
4	Final Term Examination	B1.1 B1.2 B3.2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Semester work (Quizzes, presentation, Portfolio)	weekly
2	Practical	14
3	Oral	14
4	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Semester work (Quizzes, presentation, Portfolio)	20%
2	Practical	10%
3	Oral	10%
4	Final Term Examination	60%
Total		100 %

8. List of References

No.	Reference List
1	A., Raymond, S. and Baker, R., "Surveying", 7th edition, Addison Wesley Longman, 2005
2	Bannister, A., Raymond, S. and Baker R., "Surveying", 7 th edition, Addison Wesley Longman Limited, England, 2010.

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System Practical
7	Lab facilities

]10. Matrix of Knowledge and Skills of the Course:

No	Торіс	aim	LO's
1	Map projection, transformation of coordinates	4	B1.1
2	geodesy, geometric geodesy	4	B1.1
3	triangulation, adjustment of traverse net using bebbov method, strength of triangulation.	4	B1.1 B1.2
4	Observations, data corrections and reductions. (Theodolite Applications	4	B1.2
5	Reduction of observations to the ellipsoid and Reduction from the ellipsoid to the projection plane	4	B1.2 B3.1
6	Total Station Measurement and Analysis of observations. (Total Station Applications)	4	B3.1
7	Network adjustment and Analysis of adjustment. Principle of GIS, Least square theory using condition equation method and parametric method	4	B1.1
8	Route Surveying: Horizontal And Vertical Curves	4	B3.2
9	Shape of Earth Surface, Historic Development, Geoid, Reference Ellipsoid and Spheroid, Coordinate Systems, Datum	4	B3.1 B3.2
10	. GNSS, traverse Network adjustment and Analysis of adjustment.	4	B1.2

Course Specifications: Topographic Surveying & Geodesy

11	Theory of errors, equal weight, un equal weight and error propagation	4	B3.1
12	Principle of photogrammetry, Principle of remote sensing.	4	B3.2 B1.2

____()

Mon-Found

Course Coordinator:

1. Mahmoud El Mowafy Ebrahim Shitewy

2. محمد السعيد السيد محمود زهران

Head of Department: Prof. Dr. Muharram Fouad Abdo Allaa El Din

Date of Approval:

Course : Topographic survey	ing and geodesy
Program LOs	Course LOs
B1. Select appropriate and sustainable technologies for construction of buildings and infrastructures; using either numerical techniques or physical measurements	B1.1 - Select geodetic and topographic problem using MATLAB
and/or testing by applying a full range of civil engineering concepts and techniques of: Structural Analysis and Mechanics, Properties and Strength of	B1.2 - Select appropriate ICT tools to a variety of geodetic engineering problems
Materials, Surveying, Soil Mechanics, Hydrology and Fluid Mechanics	
B3. Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess environmental impacts of projects	 B3.1 Manage the design system of tunnels and excavations using Theodolite and Total station observation. B3.1 Plan solutions to engineering problems, often based on limited and possibly contradictory information

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Public Work Engineering Department
Department Responsible for the Course	Public Work Engineering Department
Course Code	PWE 221
Year/ Level	Second Year – Second Semester
Specialization	Major
Authorization data of course specification	

Teaching Hours	Lectures	Tutorial	Practical
reaching nours	2	1	0

2. Course aims:

No.	Aim
2	Apply knowledge of Geology and Soil Mechanics in solving dams, buildings and tunnels
	problems

3. Learning Outcomes (LOs):

B2.1	Achieve an optimum design of Foundations, tunnels, excavations and Earth Retaining Structures.
B2.2	Achieve an optimum solution of geological maps, Dams and tunnels
B3.1	Plan techniques and strategies for Permeability of Soil problems
B3.2	Manage calculation processes of Settlement of building by Geotechnical Fundamentals
B3.3	Manage Ground Water problems considering balanced costs, benefits, safety, and
	reliability

No.	Topics	week
1	Introduction to soil mechanics: soil and soil properties; soil types and soil structure-soil formation	1
2	Soil Composition: Terminology and Volumetric and Weight Definitions and Relations	2
3	Mechanical Analysis of soil and Soil classification systems	3
4	Soil consistency and Atterberg limits	4
5	Soil compaction	5
6	Soil permeability	6
7	Soil stresses	7
8	Compressability and Consolidation and settlement	9-10
9	Soil shear strength theory	11-12
10	Introduction to geology and origins of Earth-rock composition-geological mapping in Egypt	13-14

No.	Teaching Method	
1	Interactive lectures (hybrid learning)	
2	Discussion Sessions	
3	Flipped classroom	

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Semester work (Quizzes, presentation, Portfolio)	B2.1 B2.2
2	Oral Examination	B2.1 B2.2 B3.1
3	Final Term Examination	B2.1 B2.2 B3.1 B3.2 B3.3

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Semester work (Quizzes, presentation, Portfolio)	weekly
2	Oral Examination	14
3	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Semester work (Quizzes, presentation, Portfolio)	20%
2	Oral Examination	10%
3	Final Term Examination	70%
Total		100 %

8. List of References

No.	Reference List
1	Braja Das, "Principles of Geotechnical Engineering", 2010.
2	Mayne, P. W., and Campanella, R. G. (2005). on Soil Mechanics and Geotechnical Engineering, International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE), London, 2, 721–724.

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No	Торіс	aim	LO's
1	Introduction to soil mechanics: soil and soil properties; soil types and soil structure-soil formation	2	B2.1 B2.2
2	Soil Composition: Terminology and Volumetric and Weight Definitions and Relations		B2.1B2.2
3	Mechanical Analysis of soil and Soil classification systems	2	B2.1 B2.2
4	Soil consistency and Atterberg limits	2	B2.2
5	Soil compaction	2	B2.2
6	Soil permeability	2	B3.1 B3.2 B3.3
7	Soil stresses	2	B2.2 B3.1
8	Compressability and Consolidation and settlement	2	B2.1 B3.1 B3.2
9	Soil shear strength theory	2	B2.2
10	Introduction to geology and origins of Earth-rock composition- geological mapping in Egypt	2	B2.2B3.3

Course Coordinator:

1. Magdy Abd El Halim Mohamed Zayed

2. Murad Henry Zaki Ebrahim

Head of Department: Prof. Dr. Muharram Fouad Abdo Allaa El Din

Mon-Found

Date of Approval:

Course: Geology and	Soil Mechanics	
Program LOs	Course LOs	
B2. Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways, Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline.	B2.1 Achieve an optimum design of Foundations, tunnels, excavations and Earth Retaining Structures.B2.2 Achieve an optimum solution of geological maps, Dams and tunnels	
B3. Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess environmental impacts of projects.	 B3.1 Plan techniques and strategies for Permeability of Soil problems B3.2 Manage calculation processes of Settlement of building by Geotechnical Fundamentals B3.3 Manage Ground Water problems considering balanced costs, benefits, safety, and reliability 	

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Public Work Engineering department
Department Responsible for the Course	Public Work Engineering department
Course Code	PWE 231
Year/ Level	Second Year-Second Semester:
Specialization	Major
Authorization data of course specification	

Taashing Houng	Lectures	Tutorial	Practical
Teaching Hours	2	1	

2. Course aims:

No.	Aim
3	Create the field of civil engineering in order to meet the necessary needs while
	taking into account the effects on society and environment.

3. Learning Outcomes (LOs):

B2.1	achieve an optimum design of the transportation and the socio-		
	economic environment, components of transportation systems.		
B2.2	evaluate the transportation impact studies and evaluation techniques of		
	transportation projects.		
B3.1	plane highway geometric elements.		
B3.2	manage traffic flow, capacity analysis, and traffic safety analysis		

No.	Topics	week
1	transportation and the socio-economic environment,	1
2	components of transportation systems,	2-3
3	different modes of transportation,	4
4	design controls, fundamentals of vehicle motion,	5
5	vehicle stability on horizontal curves, design of key highway geometric	6-7
	elements,	
6	fundamentals of traffic flow theory, capacity analysis,	9-11
7	fundamentals of transportation planning methodologies,	12
8	introduction to traffic safety analysis,	13
9	introduction to transportation impact studies and evaluation techniques of	14
	transportation projects.	

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method
1	Additional Tutorials
2	Online lectures and assignments

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs	
1	Semester work (Quizzes, presentation, Portfolio)	B3.1	
2	Final Term Examination	B2.1, B2.2, B3.1, B3.2	

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Semester work (Quizzes, presentation, Portfolio)	weekly
2	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Semester work (Quizzes, presentation, Portfolio)	20%
2	Final Term Examination	80%
Total		100 %

8. List of References

No.	Reference List			
1	Roess, R. P., E. S. Prassas, and W. R. McShane., "Traffic Engineering", Fourth Edition,			
	International Edition, Pearson, 2011.			
2	Ortuzar, J.D. and L.G. Willumsen., "Modelling Transport", Third Edition, Jon			
	Wiley&Sons, Inc., 2011.			
3	Papacostas, C.S. and Prevedouros, P.D., "Transportation Engineering and Planning",			
	Third Edition, Pearson Canada, Toronto, 2000.			

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No ·	Торіс	aim	LO's
1	transportation and the socio-economic environment,	3	B2.1
2	components of transportation systems,	3	B2.1, B2.2
3	different modes of transportation,	3	B2.1
4	design controls, fundamentals of vehicle motion,	3	B3.1
5	vehicle stability on horizontal curves, design of key highway geometric elements,	3	B3.1
6	fundamentals of traffic flow theory, capacity analysis,	3	B3.2
7	fundamentals of transportation planning methodologies,	3	B3.2
8	introduction to traffic safety analysis,	3	B3.2
9	introduction to transportation impact studies and evaluation techniques of transportation projects.	3	B2.2, B3.2

Course Coordinator:

- 1. El Sayed Abd El Azim Mohamed El Shewally
- 2. Usama Elrawy Ali Shahdah
- 3. Sanya Riad El Agamy Foda

Head of Department: Prof. Dr. Muharram Fouad Abdo Allaa El Din

Mon-Found

Date of Approval:

Course: Transportation and tr	affic Engineering	
Program LOs	Course LOs	
B3. Plan and manage construction processes; address construction defects, instability, and quality issues; maintain safety measures in construction and materials; and assess environmental impacts of projects.	B3.1 plane highway geometric elements.B3.2 manage traffic flow, capacity analysis, and traffic safety analysis	
B2. Achieve an optimum design of Reinforced	B2.1 achieve an optimum design of	
Concrete and Steel Structures, Foundations and	the transportation and the socio-	
Earth Retaining Structures; and at least three of the	economic environment ,components	
following civil engineering topics: Transportation	of transportation systems.	
and Traffic, Roadways and Airports, Railways,		
Sanitary Works, Irrigation, Water Resources and	B2.2 evaluate the transportation	
Harbors; or any other emerging field relevant to the	impact studies and evaluation	
discipline.	techniques of transportation projects.	

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Public Works Engineering department
Department Responsible for the Course	Public Works Engineering department
Course Code	PWE 241
Year/ Level	Second Year-Second Semester
Specialization	Major
Authorization data of course specification	

Taashing Houng	Lectures	Tutorial	Practical
Teaching Hours	2	2	0

2. Course aims:

No.	Aim	
6	Design different types of drinking water projects like drinking water	
	treatment plant units, elevated tanks and drinking water network.	

3. Learning Outcomes (LOs):

C2.1	Achieve an optimum design of drinking water treatment plant units.
C2.2	Achieve an optimum design of water network system.
C7.1	Select adequate water network system.
C7.2	Design water network components.

No.	Topics	week
1	Drinking water quality standards, the characteristics of potable water, water	1
	resources available for treatment plants	
2	preliminary studies to calculate the required flow, estimate the number of	2
	population for the future, components of water treatment plants	
3	design of water intakes	3
4	coagulation	4
5	flocculation	5
6	sedimentation	6
7	filtration	7
8	disinfection	9
9	design criteria for water networks	10
10	Special pieces used in networks	11
11	Elevated tanks design	12
12	design of valves and fire hydrants	13
13	testing and evaluation of water networks	14

No.	Teaching Method	
1	Interactive lectures (hybrid learning)	
2	Discussion Sessions	
3	Flipped classroom	

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Semester work (Quizzes, presentation, Portfolio)	C2.1, C7.1
2	Oral Examination	C2.1, C2.2
3	Final Term Examination	C2.1, C2.2, C7.1, C7.2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Semester work (Quizzes, presentation, Portfolio)	weekly
2	Oral Examination	14
3	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Semester work (Quizzes, presentation, Portfolio)	30%
2	Oral Examination	10%
3	Final Term Examination	60%
Total		100 %

8. List of References

No.	Reference List
1	Ronald L. Droste, Ronald L. Gehr., "Theory and Practice of Water and Wastewater Treatment," 2nd Edition, WILEY, 2018.
2	Qasim S.R., Motley E. M. and Zhu G., "Water Works Engineering: Planning, Design & Operation," A hand book, Eastern Economy Edition, 2004.

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No	Торіс	aim	LO's
	Drinking water quality standards, the		
1	characteristics of potable water, water	6	C2.1
	resources available for treatment plants		
	preliminary studies to calculate the	6	C2.1
2	required flow, estimate the number of		
2	population for the future, components of		
	water treatment plants		
3	design of water intakes	6	C2.1
4	coagulation	6	C2.1
5	flocculation	6	C2.1
6	sedimentation	6	C2.1
7	filtration	6	C2.1
8	disinfection	6	C2.1
9	design criteria for water networks	6	C2.2, C7.1
10	Special pieces used in networks	6	C7.2
11	Elevated tanks design	6	C7.2
12	design of valves and fire hydrants	6	C7.2
13	testing and evaluation of water networks	6	C2.2

Course Coordinator:

2 1. Mohamed Ahmed Abd El Hakim Mosaad 2. Hani Mahanna Shehata El Said

Head of Department: Prof. Dr. Muharram Fouad Abdo Allaa El Din

Date of Approval:

Course: Drinking Water Engineering		
Program LOs	Course LOs	
C2. Achieve an optimum design of Reinforced Concrete	C2.1 Achieve an optimum design of	
and Steel Structures, Foundations and Earth Retaining	drinking water treatment plant units.	
Structures, Transportation and Traffic, Roadways and		
Airports, Railways, Sanitary Works, Hydraulics, Water	C2.2 Achieve an optimum design of water	
Resources and Harbors.	network system.	
C7. Select and design adequate water control	C7.1 Select adequate water network	
structures, irrigation and water networks, sewerage	system.	
systems and pumping stations.		
	C7.2 Design water network components.	

1. Basic Information

Program Title	Civil Engineering Program	
Department offering the Program	Structural Engineering Department	
Department Responsible for the Course	Structural Engineering Department	
Course Code	STE231	
Year/ Level	Second Year- Second Semester	
Specialization	Major	
Authorization data of course specification		

Taashing Houng	Lectures	Tutorial	Practical
Teaching Hours	3	2	

2. Course aims:

No.	Aim
1	Master a wide range of design knowledge, techniques and analysis to use
1	them in reinforced concrete elements.

3. Learning Outcomes (LOs):

B1.1	Applying Structural Analysis and Mechanics, Properties and Strength of Materials.			
B1.2	Applying a full range of design philosophy and methods of design.			
B2.1	Achieve an optimum design of reinforced concrete sections subjected to bending			
	moment and shear stresses.			
B2.2	Achieve an optimum design of reinforced concrete beams, solid slabs, walls, columns			
	and sections subjected to moment and axial loads.			

No.	Topics	week		
1	Introduction to reinforced concrete - Design philosophy and methods of	1		
	design.			
2	Design of reinforced concrete sections subjected to bending moment.	2-3		
3	Development length, splices, curtailment of bars and reinforcement details.	4		
4	Shear stresses in concrete beams.			
5	Design of solid slabs.	6-7		
6	Design of continuous beams.	9		
7	Design and analysis of columns and sections subjected to moment and axial	10-12		
/	loads.			
8	Design of reinforced concrete walls.	13		
9	Design of R/C sections using working stress method.	14		

No.	Teaching Method	
1	Interactive lectures (hybrid learning)	
2	Discussion Sessions	
3	Flipped classroom	

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs		
1	Mid Term Examination	B2.1		
2	Semester work (Quizzes, presentation, Portfolio)	B2.2		
3	Oral Examination	B1.1, B1.2		
4	Final Term Examination	B1.1, B1.2, B2.1, B2.2		

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Oral Examination	14
4	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	13.33 %
2	Semester work (Quizzes, presentation, Portfolio)	20 %
3	Oral Examination	6.67 %
4	Final Term Examination	60 %
Total		100 %

8. List of References

No.	Reference List		
1	Macgregor, J.G., "Reinforced Concrete Mechanics & Design", Prentice-Hall		
	International Inc., New Jersey, USA, 2016.		

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No.	Торіс	aim	LO's
1	Introduction to reinforced concrete - Design philosophy and methods of design.	1	B1.1, B1.2
2	Design of reinforced concrete sections subjected to bending moment.	1	B2.1
3	Development length, splices, curtailment of bars and reinforcement details.	1	B2.1
4	Shear stresses in concrete beams.	1	B2.1
5	Design of solid slabs.	1	B2.2
6	Design of continuous beams.	1	B2.2
7	Design and analysis of columns and sections subjected to moment and axial loads.	1	B2.2
8	Design of reinforced concrete walls.	1	B2.2
9	Design of R/C sections using working stress method.	1	B1.2

Course Coordinator: Prof. Dr. Ahmed Mahmoud Yousef

Head of Department: Prof. Dr. Ahmed Mahmoud Yousef

Date of Approval: December 2019

Course: Reinforced Concrete 1			
Program LOs	Course LOs		
B1. Select appropriate and sustainable technologies	B1.1 Applying Structural Analysis and		
for construction of buildings and infrastructures;	Mechanics, Properties and Strength of		
using either numerical techniques or physical	Materials.		
measurements and/or testing by applying a full			
range of civil engineering concepts and techniques	B1.2 Applying a full range of design		
of: Structural Analysis and Mechanics, Properties	philosophy and methods of design.		
and Strength of Materials, Surveying, Soil			
Mechanics, Hydrology and Fluid Mechanics.			
B2. Achieve an optimum design of Reinforced	B2.1 Achieve an optimum design of		
Concrete and Steel Structures, Foundations and	reinforced concrete sections subjected		
Earth Retaining Structures; and at least three of the	to bending moment and shear stresses.		
following civil engineering topics: Transportation			
and Traffic, Roadways and Airports, Railways,	B2.2 Achieve an optimum design of		
Sanitary Works, Irrigation, Water Resources and	reinforced concrete beams, solid slabs,		
Harbors; or any other emerging field relevant to the	walls, columns and sections subjected		
discipline.	to moment and axial loads.		

1. Basic Information

rogram Title Civil Engineering Program			
Department offering the Program	Structural Engineering department		
Department Responsible for the Course	Structural Engineering department		
Course Code	ENG111		
Year/ Level	2^{nd} year -1^{st} semester		
Specialization	Faculty requirement		
Authorization data of course specification			
	Lectures	Tutorial	Practical
l eaching hours	2	1	0

2. Course aims:

No.	aim
5	Lead and Communicate effectively with multidisciplinary teams within
	structural projects and display professional and ethical responsibilities; and
	contextual understanding to Manage and supervise construction project.

3. Learning Outcomes (LOs):

No.	LOs
A8.1	List the elements of writing strategy.
A8.2	Prepare the technical report according to elements of writing strategy.
A8.3	Write a technical report
A8.4	Identify the categories and structure of formal reports
A8.5	Use technical writing rules in writing: laboratory report, field report, periodic
	reports, proposal, theses and dissertations and CV

No.	Topics
1	Introduction to technical writing - elements of writing strategy
2	Planning technical reports
3	Writing a technical report: using illustrations, organizing and numbering, writing reference lists and appendices.
4	Formal reports: categories of formal reports, structure of formal reports
5	Applications in report writing: laboratory report, field report, periodic

	reports, proposal, theses and dissertations
6	Ethical considerations and plagiarism - making presentation - writing a
	successful CV.

No.	Teaching Method	LOs
1	Interactive lectures (hybrid learning)	
2	Flipped classroom	

6. Teaching and Learning Methods 0f Disable Students:

No.	Teaching Method	Reason
1	Non	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Semester work (reports, presentation, formative assessment)	A8.1, A8.2, A8.3, A8.4, A8.5
2	Final exam.	A8.2, A8.3, A8.4, A8.5

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Semester work (reports, presentation, formative assessment)	Every 2 weeks
2	Final exam.	14

7.3 Weighting of Assessment:

No.	Assessment Method	Weights
1	Semester work (reports, presentation, formative assessment)	30
2	Final exam.	70
Total		100

8. List of References

No.	Reference List
1	G. J. Alred, W. E. Oliu, The Handbook of Technical Writing, 12th Edition, Bedford/St. Martin's;

2018

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	Library
3	Internet
4	Data Show System
5	Visualizer
6	Presenter

10. Matrix of Knowledge and Skills of the Course:

No.	Торіс	aim	LOs
1	Introduction to technical writing - elements of writing strategy		A8.1
2	Planning technical reports		A8.2
3	Writing a technical report: using illustrations, organizing and numbering, writing reference lists and appendices.		A8.3
4	Formal reports: categories of formal reports, structure of formal reports		A8.4
5	Applications in report writing: laboratory report, field report, periodic reports, proposal, theses and dissertations		A8.5
6	Ethical considerations and plagiarism - making presentation - writing a successful CV.		A8.5

Course Coordinator :

Prof. Dr. Ahmed Tahawia

Head of Department: Prof. Dr. Ahmed Youssef

Date of Approval: August 2021

Technical reports	writing
Program' LOs	Course LOs
A8. Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	A8.1 List the elements of writing strategy.
	A8.2 Prepare the technical report according to elements of writing strategy.
	 A8.3 Write a technical report A8.4 Identify the categories and structure of formal reports A8.5 Use technical writing rules in writing: laboratory report, field report, periodic reports, proposal, theses and dissertations and CV

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Structural Engineering Department
Department Responsible for the Course	Structural Engineering Department
Course Code	STE211
Year/ Level	Second year - First Semester
Specialization	Major
Authorization data of course specification	December 2020

Topohing Hours	Lectures	Tutorial	Practical
reaching nours	2	1	-

2. Course aims:

No.	Aim
1	Master a wide range of fundamentals of theory of structures for solving the
	problems of elastic deformations of structures and statically indeterminate structures.

3. Learning Outcomes (LOs):

B1.1	Select appropriate mathematical methods for analysis of elastic deformations of structures
	and statically indeterminate structures.
B1.2	Apply the concepts of structural analysis for elastic deformations of structures and statically
	indeterminate structures.
B2.1	Achieve an optimum design by analysis statically indeterminate structures and of
	elastic deformations of structures.
B2.2	Apply the basic principles of analysis statically indeterminate structures by 3
	moments equation and method of consistent deformations.

No.	Topics	week
1	Elastic deformations of structures	1-2-3-4-5
2	Statically indeterminate structures by Method of Consistent Deformations	6-7-9-10
3	Statically indeterminate structures by 3 moments equation	11-12
4	Effect of Temperature & Forced Displacements	13-14

No.	Teaching Method	
1	Interactive lectures (hybrid learning)	
2	Discussion Sessions	
3	Flipped classroom	

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Mid Term Examination	B1.1, B1.2
2	Semester work (Quizzes, presentation, Portfolio)	B1.1
3	Oral Examination	B1.2, B2.2
4	Final Term Examination	B1.1, B1.2, B2.1, B2.2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Oral Examination	14
4	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	15%
2	Semester work (Quizzes, presentation, Portfolio)	15%
3	Oral Examination	10 %
4	Final Term Examination	60 %
Total		100 %

8. List of References

No.	Reference List
1	Hibbeler, R. C. Structural Analysis, Eighth Edition. Pearson prentice Hall. New Jersey. USA.2015
2	EL-Dakhakhny. W. Theory of structures, fourteenth edition. Assiut University., Egypt.2010.

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No	Торіс	aim	LO's
1	Elastic deformations of structures	1	B1.1, B1.2
2	Statically indeterminate structures by Method of Consistent Deformations	1	B1.1, B1.2
3	Statically indeterminate structures by 3 moments equation	1	B1.2, B2.1
4	Effect of Temperature & Forced Displacements	1	B2.1, B2.2

Course Coordinator: Assistant Prof. Dr/ Mohamed El Tantawy El Maadawy Awad

Head of Department: Prof. Dr/ Ahmed Mahmoud Youssif Mohamed

Date of Approval: December 2019

Course: Theory of structures 3		
Program LOs	Course LOs	
B1. Select appropriate and sustainable technologies for construction of buildings and infrastructures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of: Structural	B1.1- Select appropriate mathematical methods for analysis of elastic deformations of structures and statically indeterminate structures.	
Analysis and Mechanics, Properties and Strength of Materials, Surveying, Soil Mechanics, Hydrology and Fluid Mechanics	B1.2- Apply the concepts of structural analysis for elastic deformations of structures and statically indeterminate structures.	
B2. Achieve an optimum design of Reinforced	B2.1- Achieve an optimum design by	
Concrete and Steel Structures, Foundations and	analysis statically indeterminate	
Earth Retaining Structures; and at least three of the	structures and of elastic deformations	
following civil engineering topics: Transportation	of structures.	
and Traffic, Roadways and Airports, Railways,		
Sanitary Works, Irrigation, Water Resources and	B2.2- Apply the basic principles of	
Harbors; or any other emerging field relevant to the	analysis statically indeterminate	
discipline	structures by 3 moments equation and	
	method of consistent deformations.	

1. Basic Information

Program Title	Civil Engineering Program
Department offering the Program	Structural Engineering Department
Department Responsible for the Course	Structural Engineering Department
Course Code	STE212
Year/ Level	Second year - second Semester
Specialization	Major
Authorization data of course specification	December 2020

Taashing Hours	Lectures	Tutorial	Practical
reaching nours	4	1	-

2. Course aims:

No.	Aim
2	Apply the basic principles of theory of structures for analyzing statically
	indeterminate structures

3. Learning Outcomes (LOs):

B1.1	Select appropriate mathematical methods and solutions for analysis of statically			
	indeterminate structures by using slope deflection, moment distribution and stiffness method.			
B1.2	Apply the concepts of structural analysis for Buckling Analysis.			
B2.1	Achieve an optimum design of different types of structural element by understanding			
	Buckling Analysis and Stresses in prestressed concrete.			
B2.2	Apply analytical thinking to reach the most appropriate solution to engineering			
	problems by dynamic analysis for single degree of freedom system.			

No.	Topics	week
1	Buckling Analysis	1-2
2	Slope deflection method	3-5
3	Moment distribution method	6-7
4	Stiffness method	9-11
5	Stresses in prestressed concrete	12
6	Dynamic analysis: single degree of freedom system	13-14

No.	Teaching Method
1	Interactive lectures (hybrid learning)
2	Discussion Sessions
3	Flipped classroom

6. Teaching and Learning Methods for Disable Students:

No.	Teaching Method	
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Mid Term Examination	B1.1, B1.2
2	Semester work (Quizzes, presentation, Portfolio)	B1.1, B1.2
3	Oral Examination	B1.2, B2.1
4	Final Term Examination	B1.1, B2.1, B2.2

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (Quizzes, presentation, Portfolio)	weekly
3	Oral Examination	14
4	Final Term Examination	15

7.3 Weighting of Assessments:

No.	Assessment Method	Weights
1	Mid Term Examination	17%
2	Semester work (Quizzes, presentation, Portfolio)	17%
3	Oral Examination	6 %
4	Final Term Examination	60 %
Total		100 %

8. List of References

No.	Reference List
1	Mohamed Naguib, "Analysis of Structures by displacement methods", 2010
2	Hibbeler, R. C. Structural Analysis, Eighth Edition. Pearson prentice Hall. New Jersey. USA.2012.
3	EL-Dakhakhny. W. Theory of structures, fourteenth edition. Assiut University.,

Egypt.2010.

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No	Торіс	aim	LO's
1	Buckling Analysis	2	B1.1, B1.2
2	Slope deflection method	2	B1.1, B1.2
3	Moment distribution method	2	B2.2, B1.2
4	Stiffness method	2	B2.2, B1.1
5	Stresses in prestressed concrete	2	B2.1, B1.2
6	Dynamic analysis: single degree of freedom system	2	B2.1, B2.2

Course Coordinator: Prof. Dr/Mohamed Nagib Mohamed Abou El Saad

Head of Department: Prof. Dr/ Ahmed Mahmoud Youssif Mohamed

Date of Approval: December 2019

Course: Theory of structures 4		
Program LOs	Course LOs	
B1. Select appropriate and sustainable technologies for construction of buildings and infrastructures; using either numerical techniques or physical measurements and/or testing by applying a full range of civil engineering concepts and techniques of: Structural Analysis and Mechanics, Properties and Strength of Materials, Surveying Soil Mechanics, Hydrology and	B1.1- Select appropriate mathematical methods and solutions for analysis of statically indeterminate structures by using slope deflection, moment distribution and stiffness method.	
Fluid Mechanics	analysis for Buckling Analysis.	
B2. Achieve an optimum design of Reinforced Concrete and Steel Structures, Foundations and Earth Retaining Structures; and at least three of the following civil engineering topics: Transportation and Traffic, Roadways and Airports, Railways,	B2.1- Achieve an optimum design of different types of structural element by understanding Buckling Analysis and Stresses in prestressed concrete.	
Sanitary Works, Irrigation, Water Resources and Harbors; or any other emerging field relevant to the discipline	B2.2- Apply analytical thinking to reach the most appropriate solution to engineering problems by dynamic analysis for single degree of freedom system.	

1. Basic Information

Program Title	Civil Engineering Program	
Department offering the Program	Civil Engineering Program	
Department Responsible for the Course	Civil Engineering Program	
Course Code	ENG112	
Year/ Level	Summer of the 1 st year	
Specialization	Faculty requirement	
Authorization data of course specification		
Time Period	4 Weeks / year	

2. Course aims:

No.	aim		
5	Lead and communicate effectively with multidisciplinary teams in the summer training and display professional and ethical responsibilities during		
	the training and contextual understanding to Manage and supervise construction project.		

3. Learning Outcomes (LOs):

No.	LOs
A2.1	Conduct appropriate experimentation.
A2.2	Interpret data which is obtained from experiments.
A7.1	Function efficiently as an individual or within group.
A8.1	Communicate effectively-graphically, verbally and in writing.

4. Course Contents:

No.	Topics
1	Students promoted to the 2nd year are to carry out professional training
	inside the faculty, or in specialized training centers

5. Teaching and Learning Methods:

No.	Teaching Method	LOs
1	Workshop	A7.1, A8.1
2	Discussion Sessions	A2.2

3	Practical	A2.1, A2.2, A7.1, A8.1

6. Teaching and Learning Methods 0f Disable Students:

No.	Teaching Method	Reason
1	Non	

7. Student Assessment:

7.1 Student Assessment Methods:

No.	Assessment Method	LOs
1	Observation [supervisors]]	A2.1, A7.1
2	Short Reports	A2.2
3	Final report	A8.1
4	Discussion by a committee	A7.1

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Observation [supervisors]	Every week
2	Short Reports	Every week
3	Final report	5
4	Discussion by a committee	5

7.3 Weighting of Assessment:

No.	Assessment Method	Marking	Weights
1	Observation [supervisors]	5	20 %
2	Short Reports	5	5 %
3	Final report	15	25 %
4	Discussion by a committee	25	50 %
Total	·	50	100%

8. List of References

No.	Reference List
1	Scientific References and reports related to the discipline.

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lab.
2	Library
3	Internet
4	Data Show System
5	Visualizer
6	Presenter

10. Matrix of Knowledge and Skills of the Course:

No.	Торіс	aim	LOs
1	The activities of the authority and the		A2.1, A2.2, A7.1, A8.1
	relation with the discipline.	1	

Course Coordinator:

Head of Department:

Date of Approval:

Training 1		
Program' LOs	Course LOs	
A2. Develop and conduct appropriate experimentation and/or simulation,	A2.1Conduct appropriate experimentation.	
analyze and interpret data, assess, and	A2.2 Interpret data which is obtained from	
analyses and objective engineering	experiments.	
judgment to draw conclusions		
A7. Function efficiently as an individual	A7.1 Function efficiently as an individual or	
and as a member of multi-disciplinary and	within group.	
multicultural teams.		
A8. Communicate effectively–graphically,	A8.1 Communicate effectively–graphically,	
verbally and in writing-with a range of	verbally and in writing.	
audiences using contemporary tools.		