

1. Basic Information

Program Title	All Academic programs
Department offering the Program	
Department Responsible for the Course	Engineering Mathematics and Physics
Course Code	BAS 014
Year/ Level	Preparatory year - Second semester
Specialization	Faculty requirement
Authorization data of course specification	

Tooching Hours	Lectures	Tutorial	Practical	
Teaching Hours	2	2	0	

2. Course aims:

No.	Aim
1	Apply knowledge of mathematics to solve engineering problems related to
	the motion of particles and Motion of rigid body

3. Learning Outcomes (LOs):

A1.1	Select appropriate mathematical tools to analyze the distributed loads and	
	Fluid spastics (gates).	
A1.2	Apply Method of joints and method of sections to find internal forces in	
	trusses.	
A8.1	Communicate verbally with the colleagues.	
A9.1	Demonstrate the concepts of Kinematics of a particle, Equations of motion in	
	different coordinates.	
A9.2	Study the general curvilinear motion, and Motion of projectiles	
A9.3	Apply knowledge of mathematics and science to solve engineering applied	
	problems on dry frictions.	

4. Course Contents:

No.	Topics
1	Distributed loads and Fluid statics
2	Simple Trusses, Method of Joints and Method of Sections
3	Dry Friction and its application, Frictional forces on Screws and Wedges
4	Kinematics of a particle and General curvilinear motion
5	Curvilinear motion in different coordinates

5. Teaching and Learning Methods:

No.	Teaching Method
1	Interactive lectures (hybrid learning)

2	Discussion Sessions
3	Flipped classroom

6.Teaching and Learning Methods for Disable Students:

No.	Teaching Method	Reason
1	Additional Tutorials	
2	Online lectures and assignments	

7. Student Assessment:

7.1 Student Assessment Methods:

No. Assessment Method LOs		LOs
1 Mid Term Examination A1.1,A9.3		A1.1,A9.3
2	Semester work (quizzes, presentation, portfolio)	A8.1, A9.1, A9.2, A9.3
3	Final Term Examination	A1.1,A9.2, A9.3

7.2 Assessment Schedule:

No.	Assessment Method	Weeks
1	Mid Term Examination	8
2	Semester work (quizzes, presentation, portfolio)	Weekly
3	Final Term Examination	15

7.3 Weighting of Assessment:

No.	Assessment Method	Weights
1	Mid Term Examination	15%
2	Semester work (quizzes, presentation, portfolio)	15%
3	Final Term Examination	70%
Total		100%

8. List of References

No.	Reference List
1	R.C. Hibbeler, "Engineering Mechanics: Statics, 11th Edition", Pearson
1	Prentice Hall, 2006.
2	F. P. Beer, and E. R. Johnston, Jr., D. F. Cornwell, E. R. Eisenberg, "Vector
	Mechanics for Engineering, Statics and Dynamics, 9th Edition", McGraw-
	Hill, New York, 2010.

9. Facilities Required for Teaching and Learning:

No.	Facility
1	Lecture Classroom
2	White Board
3	Data Show System
4	Visualizer
5	Presenter
6	Sound System

10. Matrix of Knowledge and Skills of the Course:

No	Торіс	Aim	LO's
1	Distributed loads and Fluid statics	1	A1.1, A8.1
2	Simple Trusses, Method of Joints and Method of Sections	1	A1.1, A8.1, A9.2
3	Dry Friction and its application, Frictional forces on Screws and Wedges	1	A1.1, A8.1, A9.2
4	Kinematics of a particle and General curvilinear motion	1	A1.1, A3.2, A8.1
5	Curvilinear motion in different coordinates, projectiles.	1	A1.2, A9.2, A9.1, A9.2, A9.3

Course Coordinator: Dr.\Seham Madkour

Head of Department: Prof. Dr. Mohamed Mohamed El Metwally El Gamal.

Date of Approval:

Course: Mechanics II			
Program LOs	Course LOs		
A1. Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	A1.1 Select appropriate mathematical tools to analyze the distributed loads and Fluid spastics(gates).		
	A1.2 Apply Method of joints and method of sections to find internal forces in trusses.		
A8. Communicate effectively–graphically, verbally and in writing–with a range of audiences using contemporary tools.	A8.1 Communicate verbally with the colleagues.		
A9. Use creative, innovative and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	A9.1 Demonstrate the concepts of Kinematics of a particle, Equations of motion in different coordinates.		
	A9.2 Study the general curvilinear motion, and Motion of projectiles		
	A9.3 Apply knowledge of mathematics and science to solve engineering applied problems on dry frictions.		