
4
Techniques of Differentiation

In this chapter we shall explore some techniques of differentiation which deal
with functions specified in various forms. We shall consider functions defined
implicitly, functions defined parametrically, functions involving powers, and
inverse functions. We shall also discuss Leibniz Theorem, a result which enables
higher derivatives of products to be calculated.

4.1 Implicit Differentiation

Sometimes we are not given y as a function of x explicitly, but instead have
an equation connecting them which we may be unable to solve explicitly for

either x or y. We may still want to find
dy

dx
, but we shall find that the resulting

expression still involves both variables.
The following example illustrates what is meant.

Example 4.1

Find the gradient
dy

dx
at the point (1, 2) on the curve whose equation is

x3 − 5xy2 + y3 + 11 = 0.

Figure 4.1 shows that the curve is not the graph of y as a function of x.
Indeed when x = 1 there are three possible values of y on the part of the graph

93



94 Calculus of One Variable

x

y

42−2−4

6

4

2

−2

Figure 4.1 Graph of x3 − 5xy2 + y3 + 11 = 0

shown. This is indicated by the inclusion of the line x = 1 in Figure 4.1. One
of the three intersections of this line with the graph is of course the given point
(1, 2). If we consider a small part of the curve in the neighbourhood of that
point then it is the graph of a function y = y(x) which is one of the solutions of
the equation of the curve and which specifies part of the graph near to (1, 2).
We cannot find y(x) explicitly in terms of x, otherwise we would be able to use
the normal procedures of differentiation.

The function y(x) satisfies the equation of the curve, namely

x3 − 5x(y(x))2 + (y(x))3 + 11 = 0.

We therefore have to use the chain rule to differentiate the y2 and y3 terms,
and the product rule for the second term, involving x and y. Using the chain
rule for the terms involving powers of y(x) gives

d

dx

(
y(x)3

)
= 3 (y(x))2

dy

dx
;

d

dx

(
y(x)2

)
= 2y(x)

dy

dx
.

Differentiating the equation of the curve with respect to x therefore gives

3x2 − 5
(

x.2y(x)
dy

dx
+ (y(x))2

)
+ 3 (y(x))2

dy

dx
= 0.

Rearranging this gives

(
3(y(x))2 − 10xy(x)

) dy

dx
= 5(y(x))2 − 3x2,

and therefore
dy

dx
=

5(y(x))2 − 3x2

3(y(x))2 − 10xy(x)
=

5y2 − 3x2

3y2 − 10xy
.
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The gradient at the point (1, 2) is then found by substituting these values
for x and y in this expression, giving −17/8. This value is consistent with
Figure 4.1, where the tangent line at (1, 2) does indeed appear to have a fairly
steep negative gradient.

When we get used to this procedure we do not normally write y(x) in full,
but just use y throughout, as in the next example.

Example 4.2

Given cos(xy) = exp(x + y), find
dy

dx
in terms of x and y.

This is a purely algebraic problem. We first apply the chain rule to both
sides, giving

− sin(xy)
d

dx
(xy) = exp(x + y)

d

dx
(x + y).

The left hand side needs the product rule, and applying this gives

− sin(xy)
(

y + x
dy

dx

)
= exp(x + y)

(
1 +

dy

dx

)
.

We now collect all the terms involving the derivative and then divide to
isolate the derivative, as we did in Example 4.1. We then obtain

dy

dx
= − exp(x + y) + y sin(xy)

x sin(xy) + exp(x + y)
,

provided that the denominator is not zero.
Note that substituting arbitrary values of x and y in this equation is mean-

ingless. The point (x, y) would have to satisfy the original equation in order

that
dy

dx
could be interpreted as the gradient of the curve.

Example 4.3

Given xy + ey = 0, find
dy

dx
and

d2y

dx2 in terms of x and y.

Differentiating the equation with respect to x gives

y + x
dy

dx
+ ey dy

dx
= 0.

We could solve this to find the derivative, and then differentiate the resulting
equation. Instead we differentiate once more without rearranging first, giving

dy

dx
+

dy

dx
+ x

d2y

dx2 + ey dy

dx
.
dy

dx
+ ey d2y

dx2 = 0.
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We now rearrange the two equations to give

dy

dx
= − y

x + ey
;

d2y

dx2 = −
2 dy

dx + ey
(

dy
dx

)2

x + ey

= −
− 2y

x+ey + ey
(

−y
x+ey

)2

x + ey

= −−2y(x + ey) + y2ey

(x + ey)3
.

One can imagine that if the initial equation were more complicated then
finding the second derivative would be very involved, and so it is useful
to see how MAPLE could tackle the calculations. We might think that we
could undertake the first step in the calculations above using the command
diff(x*y+exp(y),x); Unfortunately this just returns the output y, because
MAPLE does not know that y is meant to be a function of x. We must use
y(x) in place of y, as we did in the first example in this section. The following
sequence of commands can be used to solve the problem.

diff(x*y(x)+exp(y(x)),x);

diff(%,x);

We now rearrange this equation to find the second derivative, using
solve(%,diff(y(x),x$2));

We then have to substitute for dy/dx using
subs(diff(y(x),x)=-y(x)/(x+exp(y(x))),%);

and finally
simplify(%);

In the penultimate command we have typed in the expression for dy/dx, to
mirror that substitution step in the algebraic process. In fact it is possible to
use MAPLE to avoid having to do this, but we shall not discuss that here.

4.2 Logarithmic Differentiation

This topic is an application of implicit differentiation. It is a technique which is
useful when we have expressions involving the variable in an exponent. It can
also be applied to complicated products.
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Example 4.4

Differentiate y = xsin x.

We take logarithms of both sides of the equation, to give

ln y = ln
(
xsin x

)
= sinx. lnx.

We deal with the left hand side using implicit differentiation, and the right
hand side using the product rule. This gives

1
y

dy

dx
= cos x. lnx + sin x.

1
x

.

We therefore deduce that

dy

dx
= y

(
cos x. lnx + sin x.

1
x

)
= xsin x

(
cos x. lnx + sin x.

1
x

)
.

Example 4.5

Differentiate y = ax.

In fact we have already encountered this function, in Example 3.9, where
we used the definition of ax in terms of the exponential function. It is worth
noting again that we cannot use the rule for differentiating powers which applies

when the power is a constant. Using that rule would give
dy

dx
= xax−1 and

this is WRONG, as is confirmed if we try to apply the rule to the exponential
function. This would give the erroneous calculation

d

dx
ex = xex−1,

which we know to be incorrect.
On this occasion we obtain the result by logarithmic differentiation, which

gives

y = ax; ln y = x ln a;
1
y

dy

dx
= ln a;

dy

dx
= y ln a = ax ln a.

Example 4.6

Differentiate y = x2 sin x cosh x ex.

We could use the product rule, but taking logarithms converts the expres-
sion into a sum, in which we can differentiate each term separately. Taking
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logarithms gives

ln y = ln(x2) + ln(sinx) + ln(coshx) + ln (ex)

= 2 lnx + ln(sinx) + ln(coshx) + x.

Differentiating gives
1
y

dy

dx
=

2
x

+ cot x + tanhx + 1.

Therefore
dy

dx
= y

(
2
x

+ cot x + tanhx + 1
)

=
(
x2 sin x cosh x ex

) (
2
x

+ cot x + tanhx + 1
)

.

= 2x sin x cosh x ex + x2 cos x cosh x ex

+x2 sin x sinhx ex + x2 sin x cosh x ex.

Example 4.7

Differentiate y =
(
x3ex

)sin x
.

This example combines a product with an exponent. Taking logarithms
gives

ln y = sinx ln
(
x3ex

)
= sinx

(
lnx3 + ln ex

)
= sinx (3 lnx + x) .

Differentiating with respect to x now gives

1
y

dy

dx
= cos x (3 lnx + x) + sin x

(
3
x

+ 1
)

,

and therefore

dy

dx
=

(
x3ex

)sin x
(

cos x (3 lnx + x) + sin x

(
3
x

+ 1
))

.

4.3 Parametric Differentiation

Equations of curves are often given parametrically, for example the ellipse spec-
ified by

x = a cos t, y = b sin t, 0 ≤ t ≤ 2π.

We want to find the gradient
dy

dx
, but the parametric equations can only be

differentiated with respect to t.

We can approach this in two ways. Firstly we can use the chain rule to give

dy

dt
=

dy

dx

dx

dt
, so

dy

dx
=

dy

dt

/
dx

dt
, provided

dx

dt
�= 0.
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Secondly we can go back to the limit definition of the derivative. If we want

to work out the gradient
dy

dx
at a point specified by t = k, we need to calculate

the chord slope limit as t → k. We reason as follows.

dy

dx
= lim

t→k

y(t) − y(k)
x(t) − x(k)

= lim
t→k

y(t) − y(k)
x(t) − x(k)

t − k

t − k

= lim
t→k

y(t) − y(k)
t − k

t − k

x(t) − x(k)

= lim
t→k

y(t) − y(k)
t − k

/
lim
t→k

x(t) − x(k)
t − k

=
dy

dt

/
dx

dt
,

provided
dx

dt
�= 0.

Example 4.8

We shall use the formula developed above to find the gradient at an arbitrary
point t on the ellipse specified by

x = a cos t, y = b sin t, 0 ≤ t ≤ 2π.

The gradient is given by

dy

dx
=

dy

dt

/
dx

dt
=

b cos t

−a sin t
= − b

a
cot t.

The calculation is valid provided sin t �= 0, which excludes the points given by
t = 0,±π,±2π, . . . , where the tangent to the ellipse is parallel to the y-axis.

Example 4.9

Find
dy

dx
given that x = t2, y = t3.

These are the parametric equations of a curve known as a semicubical
parabola. Its graph is shown in Figure 11.2, where we calculate the length
of part of this curve.

The derivative is given by

dy

dx
=

dy

dt

/
dx

dt
=

3t2

2t
=

3t

2
(t �= 0).

In this case we can eliminate the parameter t to give y2 = x3, and so we could
also find the derivative using implicit differentiation, as follows.

2y
dy

dx
= 3x2, so

dy

dx
=

3x2

2y
(y �= 0).
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We can see that the graph in Figure 11.2 is not the graph of a function, and so
we would need values of both x and y to specify a point of the curve, and hence
find the gradient. With the parametric form, a given value of t determines both
x and y, and hence a unique point on the curve. That value of t will determine
the gradient at that point.

Example 4.10

Given x = a cos t, y = b sin t, 0 ≤ t ≤ 2π, find
d2y

dx2 .

It is possible to find a general formula for the second derivative, but it is
clearer to argue as follows.

We recall that
d2y

dx2 =
dY

dx
, where Y =

dy

dx
.

Applying the parametric differentiation formula to Y gives

dY

dx
=

dY

dt

/
dx

dt
.

We worked out Y in Example 4.8, and so we apply this formula, giving

d2y

dx2 =
dY

dx
=

dY

dt

/
dx

dt
= − b

a

(
cosec2t

)
/(−a sin t ) = − b

a2 sin3 t
,

provided sin t �= 0.

NOTE: A common mistake is to try to find
d2y

dx2 by differentiating the formula

obtained for
dy

dx
with respect to t. This is WRONG.

4.4 Differentiating Inverse Functions

Inverse functions were discussed in some detail in Section 1.7, and we now
consider their differentiation. It is possible to find a general formula, as we shall
demonstrate, but in most cases it is more helpful to use an implicit function
approach, and this is done in the examples in this section.

Suppose that we have a differentiable function f with its inverse g. So
y = f(x) and x = g(y) are equivalent. We shall establish differentiability of g

using the limit definition.

dg

dy
= lim

k→0

g(y + k) − g(y)
k

.



4. Techniques of Differentiation 101

Now y + k = f(x + h) for some h, and since f is continuous it follows that
k → 0 as h → 0. Also, since f has an inverse, it is 1-1, so for h �= 0 we have
f(x + h) �= f(x), so that k �= 0. Therefore

g(y + k) − g(y)
k

=
g(y + k) − g(y)

y + k − y
=

x + h − x

f(x + h) − f(x)
=

h

f(x + h) − f(x)
.

From this we deduce that

dg

dy
= lim

k→0

g(y + k) − g(y)
k

= lim
h→0

h

f(x + h) − f(x)
= 1

/
df

dx
.

If we were to assume that the inverse g is differentiable then we could
obtain the same formula from the inverse function relationship g(f(x)) = x.

Differentiating this equation using the chain rule gives g′(f(x))f ′(x) = 1, and
therefore, since y = f(x),

g′(y) =
1

f ′(x)
.

Example 4.11

We can verify the above rule using the logarithmic function.

Suppose y = f(x) = lnx, so that x = g(y) = ey is the inverse. then

g′(y) = ey = eln x = x =
1
1
x

=
1

f ′(x)
.

Example 4.12

Find the derivative of sinh−1 x.

Suppose y = sinh−1 x, so that x = sinh y. Differentiating the latter equation
implicitly with respect to x gives

1 = cosh y
dy

dx
so that

dy

dx
=

1
cosh y

,

as the general formula above implies. However we want the answer in terms of
x, and so we have to find cosh y in terms of x = sinh y. Using the hyperbolic
identity cosh2 y − sinh2 y = 1 gives cosh y =

√
1 + sinh2 y, where we use the

positive square root because cosh y is always positive. Therefore

dy

dx
=

1
cosh y

=
1√

1 + sinh2 y
=

1√
1 + x2

.
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Example 4.13

Let f(x) = x3 + 2x − 2, which is a 1-1 function. Find the derivative of f−1(x)
at the point where f and its inverse intersect.

The graphs of the function and its inverse are shown in Figure 4.2.

x

y

0 42−2−4

4

2

−2

−4

Figure 4.2 Graph of x3 + 2x − 2 and its inverse

The two graphs intersect at the point (1, 1), as can be seen from the fact that
f(1) = 1. Calculating the derivative gives f ′(x) = 3x2 + 2, and so f ′(1) = 5.

Therefore at the point of intersection the derivative of the inverse function has
value 1/5.

Example 4.14

In this example we consider the problem of differentiating the inverse sine
function. In Section 1.7.2 we considered the problems involved in restricting
the domain of sine so as to obtain a 1-1 function, which would therefore have
an inverse. We have to consider the same approach here.

Suppose that y = sin−1 x, which is equivalent to x = sin y. Differentiating
the latter equation implicitly with respect to x gives

1 = cos y
dy

dx
so that

dy

dx
=

1
cos y

.

We want the result in terms of x, and so we use the identity cos2 y +sin2 y = 1,

giving cos y = ±
√

1 − sin2 y = ±√
1 − x2. Unlike the previous example, where

sinh is 1-1 over its whole domain, and where the choice of square root was
straightforward, in this case we have to consider how the domain is restricted
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in the same way as in Section 1.7.2. Recall that in that section we used the
notation sin−1 x to denote the inverse of the function specified by

f(x) = sinx; −π

2
≤ x ≤ π

2
.

The graph was shown in Figure 1.22, and we can see that the gradient of the
inverse is positive, which means we have to choose the positive square root. We
note also that the derivative of sin is cos, which itself is positive in the interval(
−π

2
,
π

2

)
, again confirming the choice of the positive square root. So with f

specified with the given domain we have

d

dx

(
f−1(x)

)
=

1√
1 − x2

.

If on the other hand we consider the function g specified by

g(x) = sinx;
π

2
≤ x ≤ 3π

2
,

then the gradient of the inverse is negative, as shown in Figure 1.23, and also

confirmed by the fact that cosine is negative in the interval
(

π

2
,
3π

2

)
. So in

this case we have
d

dx

(
g−1(x)

)
= − 1√

1 − x2
.

4.5 Leibniz Theorem

We saw in Example 3.14 that finding the n-th derivative of a product can be
complicated. In this section we derive a general formula for this procedure. If
we begin by applying the product rule three times to the general expression of
the form h(x) = f(x)g(x) and collect like terms together at each stage we soon
perceive a pattern emerging. We find that

h′(x) = f ′(x)g(x) + f(x)g′(x);

h′′(x) = [f ′′(x)g(x) + f ′(x)g′(x)] + [f ′(x)g′(x) + f(x)g′′(x)]

= f ′′(x)g(x) + 2f ′(x)g′(x) + f(x)g′′(x);

h′′′(x) = [f ′′′(x)g(x) + f ′′(x)g′(x)] + 2[f ′′(x)g′(x) + f ′(x)g′′(x)]

+[f ′(x)g′′(x) + f(x)g′′′(x)]

= f ′′′(x)g(x) + 3f ′′(x)g′(x) + 3f ′(x)g′′(x) + f(x)g′′′(x),

where at each stage the square brackets indicate a pair of terms arising from
the application of the product rule to a single term at the previous stage.
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The pattern of numerical coefficients when the terms are collected together
is that of the binomial coefficients from Pascal’s triangle, and this enables us
to formulate the general result.

Theorem 4.15 (Leibniz)

If the functions f(x), g(x) are both differentiable n times then their product is
differentiable n times and

dn

dxn
(fg) =

dnf

dxn
g +

(
n

1

)
dn−1f

dxn−1

dg

dx
+

(
n

2

)
dn−2f

dxn−2

d2g

dx2 + . . .

+
(

n

k − 1

)
dn−(k−1)f

dxn−(k−1)

dk−1g

dxk−1 +
(

n

k

)
dn−kf

dxn−k

dkg

dxk
+ . . . + f

dng

dxn

=
n∑

k=0

(
n

k

)
dn−kf

dxn−k

dkg

dxk
.

Proof

The pattern we established above provides evidence for the truth of the result.
We include a proof here for readers who are familiar with proof by induction
(see Howie, Chapter 1) and the basic properties of binomial coefficients

In the course of the proof we use relationships involving binomial coeffi-
cients, which we prove first. It may be helpful to remind readers of the defini-
tion and notation for binomial coefficients. They occur in binomial expansions
such as (1 + x)n, where n is a positive integer. The k-th binomial coefficient is
the coefficient of xk in this expansion. It is given by the following formula(

n

k

)
=

n!
(n − k)!k!

,

for k = 0, 1, . . . , n, where 0! is defined to be 1. In fact for k = 0 and k = n

respectively we have(
n

0

)
=

n!
(n − 0)!0!

= 1,

(
n

n

)
=

n!
(n − n)!n!

= 1.

These expressions occur in Pascal’s Triangle, and the following addition
rule expresses in general terms the way in which we obtain the coefficients in
a particular row by adding the two appropriate entries from the row above.(

n

k − 1

)
+

(
n

k

)
=

n!
(n − k + 1)!(k − 1)!

+
n!

(n − k)!k!
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=
n!

(n − k + 1)!k!
(k + (n − k + 1))

=
(n + 1)!

(n + 1 − k)!k!
=

(
n + 1

k

)
.

We note the particular case k = 1, which we use below. This states that(
n

0

)
+

(
n

1

)
=

(
n + 1

1

)
, i.e., 1 +

(
n

1

)
=

(
n + 1

1

)
.

The proof of Leibniz Theorem uses the method of mathematical induction. The
result is true for n = 1 because it is just the ordinary product rule. If the result
is true for n as in the statement of the theorem then we differentiate both sides
once more with respect to x. Each term on the right hand side gives rise to two
terms, from the product rule. We therefore have

dn+1

dxn+1 (fg) =
dn+1f

dxn+1 g +
dnf

dxn

dg

dx

+
(

n

1

)
dnf

dxn

dg

dx
+

(
n

1

)
dn−1f

dxn−1

d2g

dx2

+
(

n

2

)
dn−1f

dxn−1

d2g

dx2 +
(

n

2

)
dn−2f

dxn−2

d3f

dx3 + · · ·

+
(

n

k − 1

)
dn−k+2f

dxn−k+2

dk−1g

dxk−1 +
(

n

k − 1

)
dn−k+1f

dxn−k+1

dkg

dxk

+
(

n

k

)
dn−k+1f

dxn−k+1

dkg

dxk
+

(
n

k

)
dn−kf

dxn−k

dk+1g

dxk+1 + · · ·

+
df

dx

dng

dxn
+ f

dn+1g

dxn+1 .

We now rearrange the terms in pairs so that they contain the same derivative.
So the second term in line 1 of the above chain of expressions combines with
the first term in line 2, the second term in line 2 with the first term in line 3,
and so on. This now gives

dn+1

dxn+1 (fg) =
dn+1f

dxn+1 g

+
dnf

dxn

dg

dx
+

(
n

1

)
dnf

dxn

dg

dx

+
(

n

1

)
dn−1f

dxn−1

d2g

dx2 +
(

n

2

)
dn−1f

dxn−1

d2g

dx2

+
(

n

2

)
dn−2f

dxn−2

d3f

dx3 + · · ·
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+
(

n

k − 1

)
dn−k+2f

dxn−k+2

dk−1g

dxk−1

+
(

n

k − 1

)
dn−k+1f

dxn−k+1

dkg

dxk
+

(
n

k

)
dn−k+1f

dxn−k+1

dkg

dxk

+
(

n

k

)
dn−kf

dxn−k

dk+1g

dxk+1 + · · ·

+
df

dx

dng

dxn
+ f

dn+1g

dxn+1 .

Finally we utilise the addition rule for binomial coefficients to give

dn+1

dxn+1 (fg) =
dn+1f

dxn+1 g +
(

n + 1
1

)
dn+1−1f

dxn+1−1

dg

dx

+
(

n + 1
2

)
dn+1−2f

dxn+1−2

d2g

dx2 + · · ·

+
(

n + 1
k

)
dn+1−kf

dxn+1−k

dkg

dxk
+ · · · + f

dn+1g

dxn+1 ,

which is the result for n + 1, thereby completing the proof by induction.

Example 4.16

Find a formula for the n-th derivative of x2 ln(2x + 3).

Let f(x) = ln(2x+3); g(x) = x2. Notice that for g the third and subsequent
derivatives are all zero, so that only the first three terms in Leibniz formula are
non-zero. We use the formula for the n-th derivative of f(x) which we obtained
in Example 3.13, namely

f (n)(x) = (n − 1)!
(−1)(n+1)2n

(2x + 3)n
.

Leibniz Theorem therefore gives

(fg)(n)(x) = f (n)(x).x2 +
(

n

1

)
f (n−1)(x).2x +

(
n

2

)
f (n−2).2

= (n − 1)!
(−1)n+12n

(2x + 3)n
.x2

+ n.(n − 2)!
(−1)n2n−1

(2x + 3)n−1 .2x

+
n(n − 1)

2!
.(n − 3)!

(−1)n−12n−2

(2x + 3)n−2 .2.
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If we take out the factor of
(n − 3)!(−1)(n+1)2n−2

(2x + 3)n
from each of the three

terms above we are left with

(n − 1)(n − 2).22.x2 − n(n − 2).2.2x(2x + 3) + n(n − 1)(2x + 3)2,

which simplifies to 8x2 + 12nx + 9n2 − 9n. We have therefore shown that

dn

dxn
(ln(2x + 3)) =

(n − 3)!(−1)(n+1)2n−2

(2x + 3)n

(
8x2 + 12nx + 9n2 − 9n

)
.

EXERCISES

4.1. For each of the following, find
dy

dx
in terms of x and y.

(a) 2xy + x − 3y = 2; (b) (x + 1)2 + 2(y − 1)3 = 0;

(c) x3y3 = xy − 1; (d) y lnx = x ln y;

(e) x2 − 3xy2 + y3x − y2 = 2; (f) xy
√

x + y = 1;

(g)
x

y
− y

x
= 1; (h)

x + y

x − y
=

x

y
+

1
y2 ;

(i) sin(xy2) = x + cos(yx2); (j) xy exp
(

x

y

)
= 1.

4.2. For each of the following, find
dy

dx
and

d2y

dx2 in terms of x and y.

(a) xy = 2x − 3y; (b) x sin y = sinx.

4.3. Given that x2 + 2y2 = 4, find
d2y

dx2 in terms of y only.

4.4. Find the gradient at the point (2,−2) of the curve whose equation
is x3 − xy − 3y2 = 0. Hence determine the equation of the tangent
to the curve at that point.

4.5. Find the gradient at the point (1, 0) of the curve whose equation is
x sin(xy) = x2 − 1. Hence determine the equation of the tangent to
the curve at that point. Explain from the formula why the curve is
symmetric about the y-axis, and hence write down the equation of
the tangent at the point (−1, 0).

Verify the symmetry by plotting the graph using MAPLE.
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4.6. For each of the following, use logarithmic differentiation to find
dy

dx
,

expressing the results in terms of x.

(a) y = xx; (b) y = x−x;

(c) y = (−x)−x; (d) y = (sinx)sin x;

(e) y = (ex)ln x; (f) y = (lnx)x;

(g) y = (tanx)2x; (h) y = 2x+x2
;

(i) y =
√

ex sin x; (j) y =
√

(x − 1)2e−x cos x.

4.7. For each of the following, find
dy

dx
and

d2y

dx2 in terms of t. Plot each
of the curves using MAPLE.

(a) x = 1 + ln t, y = t2 − t; (b) x = t + t2, y = t − t2;

(c) x = t ln t, y = 2t + 3; (d) x = t2, y = et + 1;

(e) x = t3, y =
√

t2 + 1; (f) x = sin(t2), y = cos t;

(g) x = tan t, y = et; (h) x = ln(cos t), y = sin t;

(i) x = cos t, y = tet; (j) x = sin(t), y = t2 + 1.

4.8. Find an expression for the gradient
dy

dx
, in terms of t, at a point on

the hyperbola given by

x = a cosh t, y = b sinh t.

Write down any values of t for which the gradient is undefined, ex-
plaining the geometrical significance.

Find expressions for
d2y

dx2 and
d3y

dx3 , in terms of t.

4.9. Find an expression, in terms of t, for the gradient at a point on the
curve specified by

x = t cos t, y = t sin t, t ≥ 0.

Plot the curve using MAPLE and explain why there are infinitely
many values of t for which the gradient is undefined.
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4.10. For each of the following functions, none of which is 1-1, investi-
gate differentiation of inverse functions obtained by restricting the
domain in various ways, as in Example 4.14.

(a) f(x) = cosh x; (b) f(x) = tanx; (c) f(x) = ex2
.

4.11. Find an expression for the derivative of tanh−1 x.

4.12. Use Leibniz Theorem to find the n-th derivative of each of the fol-
lowing.

(a) x lnx; (b) (x2 − 2x + 3)e2x; (c) x3e−x.


