كلية اللهندسة
الدارة إلذّاسـة والامتحانتات
位

كلأية الهندسة الدارة اللدراسسة والالمتحانات
位

قَائمهة بـأسيماء اللطلابـب

كلية المهندسـة إدارّة اللار اسة والالمتحـانتات

-5- الموظف المنتصن

للعام الجامعى(Y+1人 - Y 1V)/الدور الأول

كلية الثهندسة
ادارة الاراسةة والاستحانتات

ثانية - الـهندسة المدنبية

كلية الـهندسة ابدارة اللداسـة والامتحـانابت

位

ثـانية－الههندسة المدنيةً

						－	رقّم الطّلب	حالة القيد	\bigcirc
					$-10-$	شُبيماء يوسف عبدالاهلادى بوسف	1．．．．§£Y9	مستجد تمّبير	1
				11：	$3-$		1．．．．toryr	مستجد تخلفـ	r
					-9.	صصلاح الدين نـلجح الشّربينى		بسنتج تقدير	r
		．			7	صصلاح محمد صصلاح عبدالند	1．．．．ntiva	هستّجد	£
					-9	طارت عمطا السيل عبداللعزيز البكراوى	1．．．．se．1V	هستجد تَهدير	\bigcirc
					-8	عاصم عابد ابوشُبانه｜حمد	1．．．077YY	مسستجد تخلف	7
					8－	عاطلف السيد ابر｜هيم بلر	1．．．0．407	باكِ	V
					$-8-$	عبداللحليم يوسف الشّبراوى عبداللحليم	1．．．．E0人rr	هستّجد	\wedge
					14	عبدالر	1．．．．0．190	هسِتجد تَّهدير	9
			\cdot		$-4=$	عبداللرحمن سلي هحما بوض ابو السعود	1．．．．tortr	مستجد تِّدير	1.
					$-3-$	عبدالرحمن عالد اللرينّى عبدالمزيز	1．．．．そ¢ヶケV	هنسلتجد تَلدير	11
					-2	عبد الرحمن فوز	1．．．．101\％．	．	17
					7	عبداللرحمن مجى هـمدا على	1．．．．for．r	هستجد	1 r
					\longrightarrow	－كعبدالل	HTYIMVTV	بالق	12
					$-7-$			مستجبد تَّدير	10
					17	عبدالرحمن هحمد هحمد احمد ابوالنجها	1．．．．£ ¢ ¢ ¢	هستجد تَّدير	17
					17	عبداللرحمن بحمد	1．．．．tsy	هستجد تقدير	IV
	．				21		1．．．．toltt	مستلجد تُندير	1 N
					18	عبداللعزيز مخيمر ابراهيم مـمد عبدالمزيز	1．．．1汉口	هستّجد تَّدير	19
1					$-8-$	عبدالفتاع عادل）عبدالفتا ابوالحسن	1．．．．soyrl	هستجد تقدير	Y．
					$-3=$	عبدالله ابر اهيم ابل｜الهيم صـلح	1．．．．£\＆917	هستجد تَّهر	r 1
$1=$					15	عبدالله ابر｜هيم عبدالرحيم اللـّخيبى	1．．．．tolvy	مسلتجد	Yr
					$-9-$	عبدالله عبدالل	1．．．．so．rv	مسلجد تقدير	rr
，					$-9-$	عبداللن عبدالمعزيز ابر｜هيم السيد تبدإلعزيز	1．．．．soiry	هسستج تُّدير	Y \ddagger
					15		1．．．．t0YVA	مسلتجد	ro
					17		1．．．to90．	هسیتجد تهدّير	Y 7
			，		17	عبدالله محمود السيد محهد	1．．．．tovry	مسلتجد تّقدير	YY
					18		1．．．．10ヶ0！	مستجد تُّدير	Y λ
					24		1．．．．ts 4 Y	مستجّ تَّدير	ra
					－9－		1．．．．tigrv	4．	r ．

قائنمة بأسسهاب اللطلابِ
تُاتية - ألهيندسانة المدنيـية

كلية ألـهندسـة الدارنَ اللدزاسة والامتحـدانّات

						－	رفّم الطلّب	حالّة الثيد	$\stackrel{3}{ }$
					15	عمرو خليفه خلئه السيد علمى	1．．．．N土491	عسـتجد تُّدير	1
					1	عمرو صدلاح حامد تبدالله	$1 \ldots \lambda 0 \ldots V$	＇مسنّجل تُّلير	r
				$1-$	－	عصرو عالهل احلد	1．．．．1r．vi	باتك	「
					0	عمرو عكداللجليل السبي على تبداللجليل	1．．．．toryr	هسنتجد نَّلِير	！
					11	عملو بـحمد سـلد عبدالمزيز	1．．．．0．入7．	هسلتجد تِّلير	0
		．			19		1．．．．$\lambda^{\text {a }}$ ．Y	هسـتجا تِّلِر	7
1			\cdots		8	عمرو هـعد عبده حاهد الجهل		هسنتجد تّاكير	V
					10	عوضن بـحد بوضن فـر	1．．．入土99r	هسنّجد تُّلّير	人
					14		1．．．．10400	هبلتجد تقدير	9
					11	فيصل طلرقا على هحمد خبيب．	1．．．tavVr	مسلتجد تّغلف	1.
			－	$\cdots-$	\square		1．．．．1Y\＆00	باقق بـلز	11
		－				كريم اللمبي حلمى الميل		｜	Ir
					17	كريم حامد عبدالسلام．عبدالحميل لقني4	1．．．．torr．	هسسنّجد تهكير	1 H
					21	كريم حسن كارم عبده المناوى	$1 . . .4$ ¢ $0 \vee \wedge$	مسنتجد تقدير	12
						كريم حملده احما على يوسنس	1．．．NEqYY	هسنتجل تَّكرير	10
				\because	$-8=$		1．．．．t ©	هستّجد تُقدير	14
			＇		12	كريم خبلا	1．．．tı0ヶ9	مستّجد	IV
1			！		17	كريّر رضما هسلد حسن ضوانِ	1．．．．\｛0，14	هسنتّجد تَّدير	1 1
					10	كريحم．	！．．．．t0YVを		19
					15		1．．．．tsorio	هسسنجد	T．
1		－		．	19		1．．．．titio	مبسلتِّ	Y 1
，					11	كريم مشدل إبراهيم رضولن هصطلى	1．．．．for．V	هسلتجا تُّدير	Yr
					$-3-$			مستنجد تّفدير	Yr
			．		18		1．．．．¢ 0 \＆r	برسلتجد تِّلدير	〉
					16	كمـلل هـسن هصطفى كمـل عبدالمشصود	1．．．．t0入0́	4－4	Yo
，					$\rightarrow 5$	هـجدى طلبا سـلد البطّبينّى	1．．．．soroq	هسلتج	YY
				1	－9		1．．．1人 490	Aستِّجد تّكدير	YV
					-8		1．．．10017	هسلتجد تقّدير	r λ
					12		1．．．．0．入9r	هستلجد تِّير	Y9
					11	محمد إحمد هحمد ابوالنصر إبوالمينين	1．．．．talur	هس	「．

تانية - اللهندسة المدنية
للعام الجـامعى(Y• 1 A - Y) / الدور الأول

كلية المهندسة إدارة الدراسـة والامتحاتـات
位

						｜الا	رقّم الهطلب	حالة	¢	
，					15	A هعمد	1．．．．sivya	مسنتجد تِّدير	1	
，				114	－	هـحمد	1．．．．rogrr	باقّ بـلذ	Y	
					$-5 \cdots$	مـحمد شُعبان السيل محمد	1．．．tiovra	هستّجد تُّاير	r	
					13		1．．．．40入1Y	مستجد تمّدير	\mathfrak{t}	
$\\|$					15	هـحمد صـابر محمد حسنى مسلم		مسيتّجد تُبّبير	\bigcirc	
Δ					$-5-$	هحمد صبحى تبدالعاطى اللسيد	1．．．．60011	مستّجد تقدير	4	
$\sqrt{7}$					14		1．．．．totrA	مستجد تخلف｜	V	
					10		1．．．．tolr！	بسبلّجد	\wedge	
			．		18	مسمدصلاع الؤلفى همد عبدالخالتى	1．．．tavr．	هسستجد	9	
			－	－	14		1．．．．tsava		1.	
＋					18	مـمد صلاح عوض بـمود صلاح	1．．．．入さ9V人	مسنتجد تمّير	11	
					-6		1．．．．f0明	مستجد تّدير	1 r	
!					12		1．．．．．arl．		1%	
4		．		！	14	مهـمد عادل هـحمود مـحود．البلؤى	！．．．．．tarll		15	
1					12	هحمد عبدالمليم اللميد هكيه	1．．．．sorir	هستجد تّدير	10	
				．	-9.		1．．．．0．V7．	هسنتجّ	17	
					17	هحمد عبدالل	1．．．．10\％．	هسنتجد	IV	
				\square	\longrightarrow	محمد عجداللسلام هحمول شمس اللاين	1．．．1197\％		11	
					14		1．．．．toyty	هسلتجد تكدير	19	
					20	محمد عبداللمزبز بحد	1．．．．torr．	هسעّجد تِّفير	t ．	
					12		1．．．．tstry	هستّجد تّلّدير	Y 1	
					-7	هحمد عبدالله احمد عبدالللطيف سـالم	1．．．．f0．0．	هسلتجد تـغلفL	Yr	
				－	17	بـحمد عبدالنل محمد السيد	1．．．．toory	هسستجد تكّير	Yr．	
，					12	هحقد عبدالله هحمد．	1．．．．t0．01	مستّجد تكّلدِ	Yi	
			．		15	هعمد عبدالمتمود	1．．．t0701		Yo	
1					13		1．．．．¢ 0 ¢． 4	هسلتجد تُّدير	Y4	
					-8		1．．．．40\％90	مستجد تكاير	rV	
					$-4-$	بحمد برڤات احمد اللنحراوثى	$\ldots \ldots 5014 \%$	هستجد تَلثّير	r	
L					$-8-$	محمد عزت السيد عبدالث3	1．．．．1．17．	هستّجد تّإير	Ya	
$+\quad$.					12	مـحمد	1．．．．．人¢9入人	مستجد تمّدير	Y．	

كلية الـهندسة
ادارة الاراسة والامتحـانات

1			．		．	－	رثّم المطلمب	حـالة القيد	F
					12		1．．．4017\％	مستّجد تمدبر	1
				！1：	14	．．．	$1 . . .1 \leqslant 100$	هستّجذ تـقدير	Y
					21		$1 . . .150010$	｜	r
，					$1+$		1．．．．soori	هسستجد تِّدير	2
					20	بـعد عليوه عليوه عليوه النجار	1．．．t0Y	هسلـّجد تِّلدير	0
\％					11			｜－	7
P=					-5		1．．．tı9£4	هسلّجد تقدير	V
					7	بـحمد شِّ	1．．．． 0 ¢9V	هسلتجد بـّهِير	人
						＊	1．1．．totry	هسىتجد لتخلفا	9
					-6			مسلجّج نـدّبر	1.
－					12		1．．．tstrq	｜مسلتجد تِّفا	11
－						هحمد مجدى اللسيد هتولمى	1．．．t 0 ¢rr	｜مستجد توّدير	1 Y
＋	－				-7		1．．．0．Y71	مسنتجد تمّدير	$1{ }^{4}$
H				：		عحمد هحسن عالفـ، السبد	1＊．．tosY4	هسنتجّ	14
\％					-4	－محهد مـحمد البر｜	1．．．forVY	4	10
					16		1．．．．\＆ 00.1	هسنتجد تئدير	17
			－．				1．．．0．799	هسنّجد تـخلفـ	IV
					$-8=$		1，．\＆\＆Vr．	مسلّجهد نِّدبر	1λ
					$-3=$	4	1．1．100V4	بهسلتّهد تِّدير	19
4				．	4	هـحهد هـهول مبل｜لهأحود عبدالله حسين）	$1 . . .10179$		r ．
B					0				Y1
\％					-5			شـسلتجل	Y Y
－					10	هـحدل هنصول هعمد اللمتولمى	1．．．入入．．7	4سلتجد تُقديل	Yr
－					13		1．．．．ssoor	4سنّجد تقدير	Y2
O					11	مسحل نبلِ المتّولى هـحد ريحانٍ	1．．．teval	همستجد تّدير	Yo
：					10	هسكمل نبيل هـحد ابر｜هـم السِي فضل	1．．．．t́入9．	هسـتجد تمّدير	$Y 7$
\％					11		1．．．人£ \＆人 ．	هس	YV
，					15		1．．．N\＆99r	هسلتجد تِّدير	r λ
\square					15		1．．．12 20 No	هستجد	Yq
B－an	11				14		1．1．20．9Y	هسلتج	r．

الدارة اللمر اسدة والامتيتحانات

						${ }^{+8}$	（e）	Le	1
					14	Herin	［．．．．4tora｜	｜	
					12	1－	$1 \cdots+$ isyy	س	
					13		$1 . .640714$	（1）	
					14	（1）	Pr960811	隹	
					13	Trill	014	（1）	
					14		1．1．tiort	／	1
					16		$1 \times 1.60+9$	（10）	v
					16	1－	1．．．it911	（1）	
				zero	－0－	䢒	1.10 .971	｜remex	
					11	退	1096	（mand	
					－9		11.345 vvo	（1）	1
					16		1．．．48414		11
					13	\％	1．．．46991	س	$\stackrel{r}{r}$
					19	10	$1 \cdots$ ．1．try	mex	18
					17	］	1．7．41007	｜rin	10
					－8	｜rind	11．0．14tav	Hex	111
					10	－180	1，1．6．60y\％	\％	$\underline{11}$
					18	－	11.10 .479	边	110
					19	／	1．a．toves	／	4
					－4－	\％	1 1．7．744t	\％	
					10	｜	1，．．6．0．try	／	4
					15	\％	1antort	m س m	
					18		1	M	
					－5，	｜rand	1．．．．40ANV	س／	－
					20	（1）	1．．．60014	mernex	
					10	Hex	$1 \ldots$	m	
					To	｜in	1．．．6804．	M	
					－4－1	边	Priatrot	䍖	
					17	\％	1．．．．6009．		
					－9－1	｜rex	1，．．4604t	Mستب	

 تُانية - "اللهندسنة المدنينية

كلية المهندسة الدارّة الارإسية والالمتحدانات

						+	ب)	4	
					-2-	hemerata	1...totsa	4	
					-8-	\%ix	17.64100	\% min	+
					11	\%	19	.	
					-6-	Mrex	$1 \times .6 .60 \times 11$	\|	:
					15		i	-	
					-8-		1.1.701.7	\%	
					13		28910	20,	
					18		$1 \ldots$	L	4
					13		1.a.tortr	س	
					23		1.164019	m	4
					14		1×1809	\%	\sim
					14		1×10818	M	-119
					14		1..6449	mex	4
					14		1...784010	M	-
					18	\%	1 1.abors	س	
					11		1×184	M	
					-9-		1...ti8tr		
					-5-1		10.6419	س	
					14	4-9	[1..750949	ستو	
					18	隹	1,..7600	M	
					19		1..at4,	M	
					-9-1	Tere	$1 \ldots$		
					16		1...76044	ستّ	
					-8-	-	11..1801Ay	ستج	m 1
					-9		[1.760.41	ستك	m 10
					14	\%	1	min	\|r19
					15	S	1		
					-7		11.atovir	M	
					12	(1)	[1.	M	mim
					15		[1...atorAy		

هديل شُنُون اللطلانب

1-a) Define what is the gravitational unit system. Mention an example.

(2Marks)

Gravitational systems are based on Length (L), force (F), and time (T). The force (weight) depends on gravity acceleration (g) which in turn varies with location, so the system is named gravitational. Force $F=$ weigth $=C\left(\frac{m^{\prime} M_{\text {earth }}}{r^{2}}\right)=C_{1}\left(\frac{m}{r^{2}}\right)=m . g, \quad g=$ fun $\left(\frac{1}{r^{2}}\right)$
where: C, C_{1} are constants, $M_{\text {earth }}$ mass of earth and considered constant, F weight of the studied mass m, r is distance from center of earth to location of the mass m on the earth surface.

$$
1 \mathrm{slug}=1 \mathrm{lb} /\left(1 \mathrm{ft} / \mathrm{s}^{2}\right)
$$

(1 Mark)

Dimensions	Mass M	Length (L)	Force (F)	Time (T)	Temperature Absolute (θ)	Temperature Ordinary (θ)
BG system	Slug*	$\underline{\text { Foot (ft) }}$	Pound force (lb)	Second (s)	$\begin{gathered} \text { Rankine }\left(R^{0}\right) \\ R^{0}=F^{0}+459.67 \end{gathered}$	$\begin{aligned} & \text { Fahrenheit }\left(F^{0}\right) \\ & F^{0}=1.8 C^{0}+32 \end{aligned}$

(1 Mark)

1-b) The pressure in a natural gas pipeline is measured by the manometer shown. The local atmospheric pressure is $14 \mathrm{lb} / \mathrm{in}^{2}$. Determine the absolute pressure in the pipeline. (S.G.air $\left.=0\right) .\left(\gamma_{\mathrm{air}}=0\right)$
(4 Marks)

$$
\begin{align*}
& \gamma_{w}=62.4 \frac{l b}{f t^{3}} \times\left(\frac{1 f t}{12 i n}\right)^{3}=0.0361 \frac{\mathrm{lb}}{i n^{3}} \\
& P_{g a s}=P_{1}=P_{2}, \quad \& \quad P_{3}=P_{4}=P_{5} \tag{1Mark}\\
& \therefore P_{g a s}=P_{2}=P_{3}+6 i n \times \gamma_{m}=27 \mathrm{in} \times \gamma_{w}+P_{a t m}+6 i n \times \gamma_{m} \\
& \therefore P_{g a s}=27 \mathrm{in} \times \gamma_{w}+P_{a t m}+6 \mathrm{in} \times S G_{m} \times \gamma_{w} \\
& \quad=27 \mathrm{in} \times 0.0361 \frac{\mathrm{lb}}{i n^{3}}+14 \frac{\mathrm{lb}}{i n^{2}}+6 \mathrm{in} \times 13.6 \times 0.0361 \frac{\mathrm{lb}}{i n^{3}}=17.92 \frac{\mathrm{lb}}{\mathrm{in}^{2}}=2580.7 \frac{\mathrm{lb}}{\mathrm{ft}^{2}} \tag{1Mark}
\end{align*}
$$

2) A long, solid cylinder of radius $r=2 f t$ hinged at point A is used as an automatic gate. When the liquid depth reaches $15 f t$, the cylindrical gate opens by turning about the hinge at point A. Determine (a) the hydrostatic force acting on the cylinder and its line of action when the gate opens and (b) the weight of the cylinder per ft length of the cylinder. (S.G. ${ }_{\text {liquid }}=1.2$)
(10 Marks)

a) Horizontal hydrostatic forces acting on the cylinder are $\mathrm{H}_{1} \& \mathrm{H}_{2}$
$H_{1}=\gamma_{l} \times(L-r) \times r \times$ length $=1.2 \times 62.4 \frac{l b}{f t^{3}} \times 13 \mathrm{ft} \times 2 \mathrm{ft} \times 1 \mathrm{ft}=1947 \mathrm{lb} \quad$ (1 Mark)
$H_{2}=\gamma_{l} \times r \times \frac{r}{2} \times$ length $=1.2 \times 62.4 \frac{l b}{f t^{3}} \times 2 f t \times 1 f t \times 1 \mathrm{ft}=149.76 \mathrm{lb} \quad$ (1 Mark)
$H=H_{1}+H_{2}=1947+149.76=2096.76 \mathrm{lb}$
Moment of H @ $\mathrm{A}=\Sigma$ moment of their components @ A
$\therefore Y=\frac{H_{1} y_{1}+H_{2} y_{2}}{H}=\frac{1947 \times 1 \mathrm{ft}+149.76 \times 4 / 3 \mathrm{ft}}{2096.76}=1.023 \mathrm{ft}$
(1 Mark)
Or $H=\gamma A h_{c}=1.2 \times 62.4 \frac{l b}{f t t^{3}} \times 2 f t \times 1 \mathrm{ft} \times 14 \mathrm{ft}=2096.76 \mathrm{lb}$
$Y=\frac{r}{2}+\frac{I_{x c}}{A h_{c}}=\frac{2 f t}{2}+\frac{\frac{1 f t \times(2 f t)^{3}}{12}}{2 f t \times 1 f t \times 14 f t}=1+\frac{\frac{2}{3}}{28}=1.023 \mathrm{ft}$
(2Marsk)
Vertical hydrostatic forces acting on the cylinder are $\mathrm{V}_{1} \& \mathrm{~V}_{2}$
$V_{1}=\gamma_{l} \times(L-r) \times r \times$ length $=1.2 \times 62.4 \frac{l b}{f t^{3}} \times 13 f t \times 2 f t \times 1 f t=1947 \mathrm{lb} \quad$ (1 Mark)
$V_{2}=\gamma_{l} \times \frac{\pi r^{2}}{4} \times$ length $=1.2 \times 62.4 \frac{\mathrm{lb}}{f t^{3}} \times \frac{\pi(2 f t)^{2}}{4} \times 1 \mathrm{ft}=235.3 \mathrm{lb}$
(1 Mark)
$V=V_{1}+V_{2}=1947+235.3=2182.3 \mathrm{lb}$
Moment of V @ $A=\Sigma$ moment of their components @ A
$\therefore X=\frac{V_{1} X_{1}+V_{2} X_{2}}{V}=\frac{1947 \times 1 f t+235.3 \times\left(2 f t-\frac{4 r}{3 \pi} f t\right)}{2182.3}=\frac{1947 \times 1 \mathrm{ft}+235.3 \times 1.15 \mathrm{ft}}{2182.3}=1.016 \mathrm{ft}(1 \mathrm{Mark})$
Total Resultant of hydrostatic forces R
$R=\sqrt{H^{2}+V^{2}}=\sqrt{2096.67^{2}+2182.3^{2}}=3026.3 \mathrm{lb}$
(1 Mark)
$\tan \alpha=\frac{V}{H}=\frac{2182.3}{2096.67}=1.04$

$$
\therefore \alpha=46.15^{0} \quad \text { (1 Mark) }
$$

b) \sum moment for all forces $@ A=0.0$
$\therefore W=\frac{H . Y+V . X}{r}=\frac{2096.67 \times 1.023+2182.3 \times 1.016}{2 f t}=2181 \mathrm{lb}$
(2 Marks)

3-a) The pressure outside the droplet of water of diameter 0.03 mm is 10 Pa . Calculate the pressure within the droplet if the surface tension of water is $0.00073 \mathrm{~N} / \mathrm{cm}$
(2 Marks)
Let the droplet with diameter d is cut into two halves. The forces acting on one half will be: 1) tensile force due to surface tension acting around the perimeter of the cut ($\sigma \pi d$) and 2) pressure force due to pressure intensity inside the droplet in excess of the outside pressure intensity ($p \pi d^{2} / 4$), these two forces will be equal and opposite under equilibrium conditions, then:

(a) DROPLET

(b) SURFACE TENSION

(c) PRESSURE FORCES

$$
\begin{equation*}
p . \frac{\pi d^{2}}{4}=\sigma . \pi . d, \quad \text { or } \quad p=p_{\text {in }}-p_{\text {out }}=\frac{4 \sigma}{d} \tag{1Mark}
\end{equation*}
$$

$\therefore p_{\text {in }}=p_{\text {out }}+\frac{4 \sigma}{d}=10 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{2}+\frac{4 \times 0.00073 \frac{\mathrm{~N}}{\mathrm{~cm}}}{0.003 \mathrm{~cm}}=0.974 \frac{\mathrm{~N}}{\mathrm{~cm}^{2}}$

3-b) A uniform wooden beam (S.G. $=0.65$) is $10 \mathrm{~cm} \times 10 \mathrm{~cm} \mathrm{X} 3 \mathrm{~m}$ and is hinged at A. At what angle θ° will the beam float in water?

$W=$ weight of the body $\downarrow=$ volume of the body $\times \gamma_{b o d y}=$ Length $L \times$ cross section area $\boldsymbol{A} \times \gamma_{b o d y}$ $B=$ Uplift $\uparrow=$ submergened volume $\times \gamma_{w}=$ submergened length $\boldsymbol{X} \times$ cross section area $\boldsymbol{A} \times \gamma_{w}$

The body under equilibrium, then Σ moment $@ A=0.0$
$\therefore W \times \frac{L}{2} \times \cos \boldsymbol{\theta}=B \times\left(L-\frac{X}{2}\right) \times \cos \boldsymbol{\theta}$
$\therefore L \times \boldsymbol{A} \times \gamma_{\text {body }} \times \frac{L}{2}=X \times \boldsymbol{A} \times \gamma_{\boldsymbol{w}} \times\left(L-\frac{X}{2}\right)$
$\therefore L \times S G_{\text {body }} \times \frac{L}{2}=X \times\left(L-\frac{X}{2}\right)$
$\therefore L^{2} \times S G_{b o d y}=2 X L-X^{2} \quad$ or $\quad X^{2}-2 X L+L^{2} \times S G_{b o d y}=0$
$\therefore X=\frac{+2 L \pm \sqrt{(-2 L)^{2}-4 L^{2} \times S G_{\text {body }}}}{2}$
$\therefore X=\frac{+6 \pm \sqrt{(-6)^{2}-4 \times 9 \times 0.65}}{2}=1.23 \mathrm{~m}$
$\sin \theta=\frac{1 m}{L-X}=\frac{1 m}{3-1.23}=0.565$
$\therefore \theta^{\circ}=34.4^{\circ}$

4-a) A tank has a bottom with $2 m$ wide $x 5 m$ long is filled to a depth of $0.8 m$ with a liquid of mass density $840 \mathrm{kgm}^{-3}$. What will be the force in N on the bottom of the vessel (a) when being accelerated vertically upwards at $4 \mathrm{~ms}^{-2},(b)$ when the acceleration ceases (stop) and the vessel continues to move at a constant velocity of $7 \mathrm{~ms}^{-1}$ vertically upwards?
(3Marks)
a) Force on tank bottom $F=$ pressure at the tank bottom $P X$ bottom area A
$P=\rho g h\left(1+\frac{a_{z}}{g}\right)=840 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.8 \mathrm{~m} \times\left(1+\uparrow \frac{4}{9.81}\right)=6592 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 1.407=9280 \mathrm{~Pa}$
$\therefore F=2 m \times 5 m \times 9280 \mathrm{~Pa}=92800 \mathrm{~N}$
b) When the tank is moving with constant velocity vertical acceleration $\mathrm{a}_{2}=0$
$\therefore F=\rho g h A=6592 \times 2 m \times 5 m=65920 N$

4-b) A volume of glycerin equal to 10 liters has a specific gravity of 1.26. (a) Determine its weight in pounds and in Newton's at the Earth's surface. (b) What would be its mass (in slugs) and its weight (in pounds) if located on the moon's surface where the gravitational attraction is one-sixth that at the Earth's surface? (4 marks)
a) Weight $W=$ Mass \times gravity acceleration $=$ Density \times Volume \times gravity acceleration $=\rho \times V o l \times g=S G \times \rho_{w} \times V o l \times g=S G \times V o l \times \gamma_{w}$
$\therefore W=1.26 \times 10$ liters $\times \frac{1000 \mathrm{~cm}^{3}}{1 \text { liter }} \times\left(\frac{1 \mathrm{ft}}{30.48 \mathrm{~cm}}\right)^{3} \times 62.4 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}=27.77 \mathrm{lb}$
$\therefore W=1.26 \times 10$ liters $\times \frac{1 \mathrm{~m}^{3}}{1000 \text { liter }} \times 9810 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}=123.6 \mathrm{~N}$
b) Mass on Earth $=$ Mass on Moon $=$ constant $M=S G \times \rho_{w} \times V o l .=S G \times \frac{\gamma_{w}}{g} \times V o l$.
$\therefore M=1.26 \times \frac{62.4 \frac{\mathrm{lb}}{f t^{3}}}{32.2 \frac{f t}{s^{2}}} \times 10$ liters $\times \frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{liter}} \times\left(\frac{1 \mathrm{ft}}{30.48 \mathrm{~cm}}\right)^{3}=1.26 \times 1.94 \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 0.353 \mathrm{ft}^{3}=0.86 \mathrm{slug}$
$W=$ weight on earth $\times \frac{\text { gravity acceleration on Moon }}{\text { gravity acceleration on Earth }}=27.77 \mathrm{lb} \times \frac{1}{6}=4.63 \mathrm{lb}$

El-Mansoura University
Faculty of Engineering
Dept. of Irrigation \& Hydraulics
Second Year Civil Engineering

Mention corresponding dimensions of the calculations.
$\gamma_{w}=9810 \mathrm{~N} / \mathrm{m}^{3}=62.4 \mathrm{lb} / \mathrm{ft}^{3}, \quad g=9.81 \mathrm{~m} / \mathrm{s}^{2}=32.2 \mathrm{ft} / \mathrm{s}^{2}$

1-a) A volume of oil equal to 5liters has a specific gravity of 0.7 . (a) Determine its weight in pounds and in Newton's at the Earth's surface. (b) What would be its mass (in slugs) and its weight (in pounds) if located on the moon's surface where the gravitational attraction is one-sixth that at the Earth's surface?
(4 marks)
a) Weight $W=$ Mass \times gravity acceleration $=$ Density \times Volume \times gravity acceleration

$$
=\rho \times V o l \times g=S G \times \rho_{w} \times V o l \times g=S G \times V o l \times \gamma_{w}
$$

$\therefore W=0.7 \times 5$ liters $\times \frac{1000 \mathrm{~cm}^{3}}{1 l i t e r} \times\left(\frac{1 \mathrm{ft}}{30.48 \mathrm{~cm}}\right)^{3} \times 62.4 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}=7.72 \mathrm{lb}$
(1Mark)
$\therefore W=0.7 \times 5$ liters $\times \frac{1 \mathrm{~m}^{3}}{1000 \text { liter }} \times 9810 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}=34.3 \mathrm{~N}$
b) Mass on Earth $=$ Mass on Moon $=$ constant $M=S G \times \rho_{w} \times V o l .=S G \times \frac{\gamma_{w}}{g} \times V o l$.
$\therefore M=0.7 \times \frac{62.4 \frac{\mathrm{lb}}{\mathrm{ft}}}{32.2 \frac{\mathrm{ft}}{s^{2}}} \times 5$ liters $\times \frac{1000 \mathrm{~cm}^{3}}{1 \text { liter }} \times\left(\frac{1 \mathrm{ft}}{30.48 \mathrm{~cm}}\right)^{3}=0.7 \times 1.94 \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 0.1766 \mathrm{ft}^{3}=0.24 \mathrm{slug}$
(1Mark)
$W=$ weight on earth $\times \frac{\text { gravity acceleration on Moon }}{\text { gravity acceleration on Earth }}=7.72 \mathrm{lb} \times \frac{1}{6}=1.29 \mathrm{lb}$
(1Mark)

1-b) Define what is the inconsistence unit system. Mention an example.
(2 Marks)
Inconsistent system: the unit force does not cause unit mass to undergo unit acceleration; they require an additional conversion factor.
$1 \mathrm{~kg}=1 \mathrm{~kg} \times \underline{9.81} \mathrm{~m} / \mathrm{s}^{2}$
or $1 \mathrm{lb}=1 \mathrm{lb} b_{m} \times 32.2 \mathrm{ft} / \mathrm{s}^{2}$
(1 Mark)

Dimensions	Mass M	Length (L)	Force (F)	Time (T)	Temperature Absolute (θ)	Temperature Ordinary (θ)
Metric system (mks)	$\frac{\text { Kilogram }}{\underline{(k g)}}$	$\frac{\text { Meter }}{(m)}$	Second (s)	Kilograme force $\left(k g_{f}\right)^{*}$	Kelvin (K) $K=C^{0}+273.15$	Celsius (C^{0})
United state customary system(USCS)	Pound mass (lb b_{m})	Foot (ft)	$\frac{\text { Second }}{(\underline{s})}$	$\begin{gathered} \text { Pound } \\ (l b)^{*}[U S C S] \end{gathered}$	Rankine $\left(R^{0}\right)$	Fahrenheit $\left(F^{0}\right)$

(1Mark)

2-a) The pressure outside the droplet of water of diameter 0.002 cm is $9 \mathrm{~N} / \mathrm{m}^{2}$. Calculate the pressure within the droplet if the surface tension of water is $0.07 \mathrm{~N} / \mathrm{m}$
(2 Marks)
Let the droplet with diameter d is cut into two halves. The forces acting on one half will be: 1) tensile force due to surface tension acting around the perimeter of the cut ($\sigma \pi d$) and 2) pressure force due to pressure intensity inside the droplet in excess of the outside pressure intensity ($p \pi d^{2} / 4$), these two forces will be equal and opposite under equilibrium conditions, then:

(a) DROPLET

(b) SURFACE TENSION

(c) PRESSURE FORCES

$$
\begin{equation*}
p . \frac{\pi d^{2}}{4}=\sigma . \pi . d, \quad \text { or } \quad p=p_{\text {in }}-p_{\text {out }}=\frac{4 \sigma}{d} \tag{1Mark}
\end{equation*}
$$

$\therefore p_{\text {in }}=p_{\text {out }}+\frac{4 \sigma}{d}=9 \frac{N}{m^{2}}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{2}+\frac{4 \times 0.0007 \frac{\mathrm{~N}}{\mathrm{~cm}}}{0.002 \mathrm{~cm}}=1.4009 \frac{\mathrm{~N}}{\mathrm{~cm}^{2}}$

2-b) The pressure in a natural gas pipeline is measured by the manometer shown. The local atmospheric pressure is $15 \mathrm{lb} / \mathrm{in}^{2}$. Determine the absolute pressure in the pipeline. (S.G.air $\left.=0\right) .\left(\gamma_{\mathrm{air}}=0\right) \quad$ (4 Marks)

$$
\begin{aligned}
& \gamma_{w}=62.4 \frac{l b}{f t^{3}} \times\left(\frac{1 f t}{12 i n}\right)^{3}=0.0361 \frac{l b}{i n^{3}} \\
& P_{g a s}=P_{1}=P_{2}, \quad \& \quad P_{3}=P_{4}=P_{5} \\
& \therefore P_{g a s}=P_{2}=P_{3}+6 i n \times \gamma_{m}=27 i n \times \gamma_{w}+P_{a t m}+6 i n \times \gamma_{m} \\
& \therefore P_{g a s}=27 i n \times \gamma_{w}+P_{a t m}+6 i n \times S G_{m} \times \gamma_{w} \\
& \quad=27 i n \times 0.0361 \frac{l b}{i n^{3}}+15 \frac{l b}{i n^{2}}+6 i n \times 13.6 \times 0.0361 \frac{l b}{i n^{3}}=18.92 \frac{\mathrm{lb}}{i n^{2}}=2724.5 \frac{\mathrm{lb}}{f t^{2}}
\end{aligned}
$$

3) A long, solid cylinder of radius $r=1 m$ hinged at point A is used as an automatic gate. When the liquid depth reaches $5 m$, the cylindrical gate opens by turning about the hinge at point A. Determine (a) the hydrostatic force acting on the cylinder and its line of action when the gate opens and (b) the weight of the cylinder per m length of the cylinder. (S.G.liquid $=0.8$)

a) Horizontal hydrostatic forces acting on the cylinder are $\mathrm{H}_{1} \& \mathrm{H}_{2}$
$H_{1}=\gamma_{l} \times(L-r) \times r \times$ length $=0.8 \times 9810 \frac{N}{m^{3}} \times 4 m \times 1 m \times 1 m=31392 N \quad$ (1 Mark) $H_{2}=\gamma_{l} \times r \times \frac{r}{2} \times$ length $=0.8 \times 9810 \frac{N}{m^{3}} \times 1 m \times 0.5 m \times 1 m=3924 N \quad$ (1 Mark) $H=H_{1}+H_{2}=31392+3924=35316 \mathrm{~N}$
Moment of $\mathrm{H} @ \mathrm{~A}=\Sigma$ moment of their components @ A
$\therefore Y=\frac{H_{1} y_{1}+H_{2} y_{2}}{H}=\frac{31392 \times 0.5 \mathrm{~m}+3924 \times 2 / 3 \mathrm{~m}}{35316}=0.519 \mathrm{~m}$
Or $H=\gamma A h_{c}=0.8 \times 9810 \frac{N}{m^{3}} \times 1 m \times 1 m \times 4.5 m=35316 \mathrm{~N}$
$Y=\frac{r}{2}+\frac{I_{x c}}{A h_{c}}=\frac{1 m}{2}+\frac{\frac{1 m \times(1 m)^{3}}{12}}{1 m \times 1 m \times 4.5 m}=0.5+\frac{\frac{1}{12}}{4.5}=0.518 \mathrm{~m}$
(2 Marks)
Vertical hydrostatic forces acting on the cylinder are $\mathrm{V}_{1} \& \mathrm{~V}_{2}$
$V_{1}=\gamma_{l} \times(L-r) \times r \times$ length $=0.8 \times 9810 \frac{N}{m^{3}} \times 4 m \times 1 m \times 1 m=31392 N \quad$ (1 Mark)
$V_{2}=\gamma_{l} \times \frac{\pi r^{2}}{4} \times$ length $=0.8 \times 9810 \frac{N}{m^{3}} \times \frac{\pi(1 m)^{2}}{4} \times 1 \mathrm{~m}=6166.3 \mathrm{~N}$
$V=V_{1}+V_{2}=31392+6166.3=37558.3 \mathrm{~N}$
Moment of V @ A = Σ moment of their components @ A
$\therefore X=\frac{V_{1} X_{1}+V_{2} X_{2}}{V}=\frac{31392 \times 0.5 \mathrm{~m}+6166.3 \times\left(1 m-\frac{4 r}{3 \pi} m\right)}{37558.3}=\frac{31392 \times 0.5 \mathrm{~m}+6166.3 \times 0.576 \mathrm{~m}}{37558.3}=0.512 \mathrm{~m}$

Total Resultant of hydrostatic forces R
$R=\sqrt{H^{2}+V^{2}}=\sqrt{35316^{2}+37558^{2}}=51554 N$
(1 Mark)
$\tan \alpha=\frac{V}{H}=\frac{37558}{35316}=1.06$
$\therefore \alpha=46.76^{0}$
b) \sum moment for all forces $@ A=0.0$
$\therefore W=\frac{H . Y+V . X}{r}=\frac{35316 \times 0.519+37558 \times 0.512}{1 \mathrm{~m}}=37558.7 \mathrm{~N}$
(2 Marks)

4-a) A cylindrical wooden (S.G. $=0.7$) is $3 f t$ diameter $x 10 f t$ length and is hinged at At what angle θ° will the beam float in water?

$W=$ weight of the body $\downarrow=$ volume of the body $\times \gamma_{\text {body }}=$ Length $\boldsymbol{L} \times$ cross section area $\boldsymbol{A} \times \gamma_{b o d y}$ $B=$ Uplift $\uparrow=$ submergened volume $\times \gamma_{w}=$ submergened length $\boldsymbol{X} \times$ cross section area $\boldsymbol{A} \times \gamma_{w}$

The body under equilibrium, then Σ moment $@ A=0.0$
$\therefore W \times \frac{L}{2} \times \cos \boldsymbol{\theta}=B \times\left(L-\frac{X}{2}\right) \times \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$
$\therefore L \times \boldsymbol{A} \times \boldsymbol{\gamma}_{\text {body }} \times \frac{L}{2}=X \times \boldsymbol{A} \times \gamma_{\boldsymbol{w}} \times\left(L-\frac{X}{2}\right)$
$\therefore L \times S G_{\text {body }} \times \frac{L}{2}=X \times\left(L-\frac{X}{2}\right)$
$\therefore L^{2} \times S G_{b o d y}=2 X L-X^{2}$
or $\quad X^{2}-2 X L+L^{2} \times S G_{b o d y}=0$
(1 Mark)
(1 Mark)
$\therefore X=\frac{+2 L \pm \sqrt{(-2 L)^{2}-4 L^{2} \times S G_{\text {body }}}}{2}$
$\therefore X=\frac{+20 \pm \sqrt{(-20)^{2}-4 \times 100 \times 0.7}}{2}=4.5 \mathrm{ft}$
$\sin \theta=\frac{1 m}{L-X}=\frac{1 m}{10 f t-4.5 f t} \times \frac{1 \mathrm{ft}}{0.3048 \mathrm{~m}}=0.6$
$\therefore \theta^{\circ}=36.6^{\circ}$
4-b) A tank has a bottom with $1 m$ wide $x 3.0 m$ long is filled to a depth of $2 m$ with a liquid of mass density $900 \mathrm{kgm}^{-3}$. What will be the force in N on the bottom of the vessel (a) when being accelerated vertically upwards at $4 \mathrm{~ms}^{-2},(b)$ when the acceleration ceases (stop) and the vessel continues to move at a constant velocity of $9 \mathrm{~ms}^{-1}$ vertically upwards?
(3Marks)
a) Force on tank bottom $\mathrm{F}=$ pressure at the tank bottom PX bottom area A
$P=\rho g h\left(1+\frac{a_{z}}{g}\right)=900 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 2 \mathrm{~m} \times\left(1+\uparrow \frac{4}{9.81}\right)=17658 \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times 1.407=24844.8 \mathrm{~Pa}$
$\therefore F=1 \mathrm{~m} \times 3 \mathrm{~m} \times 24844.8 \mathrm{~Pa}=74534.4 \mathrm{~N}$
b) When the tank is moving with constant velocity vertical acceleration $\mathrm{a}_{\mathrm{z}}=0$
$\therefore F=\rho g h A=17658 \times 1 \mathrm{~m} \times 3 \mathrm{~m}=52974 \mathrm{~N}$

1-a) Define what is the absolute unit system. Mention an example.
(2 Marks)
Absolute systems (non-gravitational) are based on length (L), mass (M), and time (T) and they named absolute because they are independent of the acceleration of gravity.
$1 N=1 \mathrm{~kg} \times 1 \mathrm{~m} / \mathrm{s}^{2}$
(1 Mark)

Dimensions	Mass M	Length (L)	Time (T)	Force (F)	Temperature Absolute (θ)	Temperature Ordinary (θ)
SI system	$\frac{\text { Kilogram }}{\underline{(k g)}}$	Meter (m)	$\frac{\text { Second }}{(s)}$	Newton (N) ${ }^{*}$	$\begin{aligned} & \text { Kelvin }(K) \\ & K=C^{0}+273.15 \end{aligned}$	Celsius (C^{0})
Or Metric system (mks)	$\frac{\text { Kilogram }}{\underline{(k g)}}$	Meter (m)	$\frac{\text { Second }}{(s)}$	Kilograme force $\left(\mathrm{kg}_{f}\right)$	$\begin{aligned} & \text { Kelvin }(K) \\ & K=C^{0}+273.15 \end{aligned}$	Celsius (C^{0})
Or United state customary system(USCS)	Pound $\text { mass }\left(l b_{\underline{m}}\right)$	$\frac{\text { Foot }}{(f t)}$	$\frac{\text { Second }}{(s)}$	Pound (lb)	Rankine $\left(R^{0}\right)$	Fahrenheit $\left(F^{0}\right)$

(1 Mark)

1-b) The absolute pressure of the air in the tank shown is measured to be 165 kPa . Determine the differential height h of the mercury column. The local atmospheric pressure is $100 \mathrm{KN} / \mathrm{m}^{2}$. $\left(\gamma_{\mathrm{air}}=0\right)$

$P_{\text {air abs }}=165 k P a=P_{1}$,
(1 Mark)
$\therefore P_{2}=P_{\text {air abs }}+0.3 m \times \gamma_{w}=P_{3}=h \times \gamma_{m}+0.75 \times \gamma_{o}+P_{a t m}$
$\therefore 165 \frac{\mathrm{kN}}{\mathrm{m}^{2}}+0.3 \mathrm{~m} \times 9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}=h \times 13.6 \times 9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}+0.75 \mathrm{~m} \times 0.72 \times 9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}+100 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
$\therefore h \times 13.6 \times 9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}=165 \frac{\mathrm{kN}}{\mathrm{m}^{2}}+0.3 \mathrm{~m} \times 9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}-0.75 \mathrm{~m} \times 0.72 \times 9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}-100 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
$\therefore h=0.465 m$

2-a) The pressure outside the droplet of water of diameter 0.004 cm is 8 Pa . Calculate the pressure within the droplet if the surface tension of water is $0.00073 \mathrm{~N} / \mathrm{cm}$
(2 Marks)
Let the droplet with diameter d is cut into two halves. The forces acting on one half will be: 1) tensile force due to surface tension acting around the perimeter of the cut ($\sigma \pi d$) and 2) pressure force due to pressure intensity inside the droplet in excess of the outside pressure intensity ($p \pi d^{2} / 4$), these two forces will be equal and opposite under equilibrium conditions, then:

(a) DROPLET

(b) SURFACE TENSION

(c) PRESSURE FORCES
$p . \frac{\pi d^{2}}{4}=\sigma . \pi . d, \quad$ or $\quad p=p_{\text {in }}-p_{\text {out }}=\frac{4 \sigma}{d}$
(1 Mark)
$\therefore \boldsymbol{p}_{\text {in }}=\boldsymbol{p}_{\text {out }}+\frac{4 \sigma}{d}=8 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{2}+\frac{4 \times 0.00073 \frac{\mathrm{~N}}{\mathrm{~cm}}}{0.004 \mathrm{~cm}}=0.7308 \frac{\mathrm{~N}}{\mathrm{~cm}^{2}}$
2-b) A cylindrical wooden (S.G. $=0.8$) is 0.12 m diameter $\times 2.5 \mathrm{~m}$ length and is hinged at A. At what angle θ° will the beam float in water?

$W=$ weight of the body $\downarrow=$ volume of the body $\times \gamma_{\text {body }}=$ Length $\boldsymbol{L} \times$ cross section area $\boldsymbol{A} \times \gamma_{b o d y}$ $B=$ Uplift $\uparrow=$ submergened volume $\times \gamma_{w}=$ submergened length $\boldsymbol{X} \times$ cross section area $\boldsymbol{A} \times \gamma_{w}$

The body under equilibrium, then Σ moment $@ A=0.0$
$\therefore W \times \frac{L}{2} \times \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}=B \times\left(L-\frac{X}{2}\right) \times \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$
$\therefore L \times \boldsymbol{A} \times \gamma_{\text {body }} \times \frac{L}{2}=X \times \boldsymbol{A} \times \gamma_{\boldsymbol{w}} \times\left(L-\frac{X}{2}\right)$
$\therefore L \times S G_{\text {body }} \times \frac{L}{2}=X \times\left(L-\frac{X}{2}\right)$
$\therefore L^{2} \times S G_{\text {body }}=2 X L-X^{2}$
or $\quad X^{2}-2 X L+L^{2} \times S G_{\text {body }}=0$
$\therefore X=\frac{+2 L \pm \sqrt{(-2 L)^{2}-4 L^{2} \times S G_{\text {body }}}}{2}$
$\therefore X=\frac{+5 \pm \sqrt{(-5)^{2}-4 \times 6.25 \times 0.8}}{2}=1.38 \mathrm{~m}$
$\sin \theta=\frac{1 m}{L-X}=\frac{1 m}{2.5-1.38}=0.89$
$\therefore \theta^{o}=63.2^{\circ}$
3) A long, solid cylinder of radius $r=3 f t$ hinged at point A is used as an automatic gate. When the liquid depth reaches $18 f t$, the cylindrical gate opens by turning about the hinge at point A. Determine (a) the hydrostatic force acting on the cylinder and its line of action when the gate opens and (b) the weight of the cylinder per ft length of the cylinder. (S.G.liquid $=1.3$)
(10 Marks)

a) Horizontal hydrostatic forces acting on the cylinder are $\mathrm{H}_{1} \& \mathrm{H}_{2}$
$H_{1}=\gamma_{l} \times(L-r) \times r \times$ length $=1.3 \times 62.4 \frac{l b}{f t^{3}} \times 15 \mathrm{ft} \times 3 \mathrm{ft} \times 1 \mathrm{ft}=3650 \mathrm{lb} \quad$ (1 Mark)
$H_{2}=\gamma_{l} \times r \times \frac{r}{2} \times$ length $=1.3 \times 62.4 \frac{\mathrm{lb}}{\mathrm{ft}^{3}} \times 3 \mathrm{ft} \times 1.5 \mathrm{ft} \times 1 \mathrm{ft}=365 \mathrm{lb} \quad$ (1 Mark)
$H=H_{1}+H_{2}=3650+365=4015 \mathrm{lb}$
Moment of H @ $\mathrm{A}=\Sigma$ moment of their components @ A
$\therefore Y=\frac{H_{1} y_{1}+H_{2} y_{2}}{H}=\frac{3650 \times 1.5 \mathrm{ft}+365 \times 2 \mathrm{ft}}{4015}=1.55 \mathrm{ft}$
(1 Mark)
Or $H=\gamma A h_{c}=1.3 \times 62.4 \frac{l b}{f^{3}} \times 3 \mathrm{ft} \times 1 \mathrm{ft} \times 16.5 \mathrm{ft}=2096.76 \mathrm{lb}$
(1 Mark)
$Y=\frac{r}{2}+\frac{I_{x c}}{A h_{c}}=\frac{3 f t}{2}+\frac{\frac{1 f t \times(3 f t)^{3}}{12}}{3 f t \times 1 f t \times 16.5 f t}=1.5+\frac{\frac{9}{4}}{49.5}=1.55 f t$
(2 Marks)
Vertical hydrostatic forces acting on the cylinder are $\mathrm{V}_{1} \& \mathrm{~V}_{2}$
$V_{1}=\gamma_{l} \times(L-r) \times r \times$ length $=1.3 \times 62.4 \frac{\mathrm{lb}}{f t^{3}} \times 15 \mathrm{ft} \times 3 \mathrm{ft} \times 1 \mathrm{ft}=3650 \mathrm{lb} \quad$ (1 Mark)
$V_{2}=\gamma_{l} \times \frac{\pi r^{2}}{4} \times$ length $=1.3 \times 62.4 \frac{l b}{f t^{3}} \times \frac{\pi(3 f t)^{2}}{4} \times 1 f t=574 l b$
$V=V_{1}+V_{2}=3650+574=4224 l b$
Moment of V @ A = Σ moment of their components @ A
$\therefore X=\frac{V_{1} X_{1}+V_{2} X_{2}}{V}=\frac{3650 \times 1.5 \mathrm{ft}+574 \times\left(3 \mathrm{ft}-\frac{4 r}{3 \pi} \mathrm{ft}\right)}{4224}=\frac{3650 \times 1.5 \mathrm{ft}+574 \times 1.73 \mathrm{ft}}{4224}=1.53 \mathrm{ft} \quad$ (1 Mark)
Total Resultant of hydrostatic forces R
$R=\sqrt{H^{2}+V^{2}}=\sqrt{4015^{2}+4224^{2}}=5828 l b$
(1 Mark)
$\tan \alpha=\frac{V}{H}=\frac{4224}{4015}=1.052$
$\therefore \alpha=46.45^{0}$
b) \sum moment for all forces $@ A=0.0$
$\therefore W=\frac{H \cdot Y+V \cdot X}{r}=\frac{4015 l \times 1.55+4224 \times 1.53}{3 f t}=4229 l b$
$4-\mathrm{a}$) A tank has a bottom with 2 ft wide x 6 ft long is filled to a depth of 3 ft with a liquid of S.G. $=0.8$. What will be the force in pounds on the bottom of the vessel (a) when being accelerated vertically upwards at 20fts ${ }^{-2}$, (b) when the acceleration ceases (stop) and the vessel continues to move at a constant velocity of $7 \mathrm{fts}^{-1}$ vertically upwards?
(3Marks)
a) Force on tank bottom $F=$ pressure at the tank bottom $P \times$ bottom area A
$P=\gamma h\left(1+\frac{a_{z}}{g}\right)=S G \times \gamma_{w} h\left(1+\frac{a_{z}}{g}\right)=0.8 \times 62.4 \frac{l b}{f t^{3}} \times 3 f t \times\left(1+\uparrow \frac{20}{32.2}\right)=149.8 \frac{l b}{f t^{2}} \times 1.62=242.8 \frac{l b}{f t^{2}}$
$\therefore F=2 f t \times 6 f t \times 242.8 \frac{l b}{f t^{2}}=2914 l b$
b) When the tank is moving with constant velocity vertical acceleration $a_{2}=0$
$\therefore F=S G \times \gamma_{w} h A=149.8 \frac{l b}{f t^{2}} \times 2 f t \times 6 f t=1797.6 l b$

4-b) A volume of oil equal to 8 liters has a specific gravity of 0.9 . (a) Determine its weight in pounds and in Newton's at the Earth's surface. (b) What would be its mass (in slugs) and its weight (in pounds) if located on the moon's surface where the gravitational attraction is one-sixth that at the Earth's surface?
a) Weight $W=$ Mass \times gravity acceleration $=$ Density \times Volume \times gravity acceleration

$$
\begin{equation*}
=\rho \times V o l \times g=S G \times \rho_{w} \times V o l \times g=S G \times V o l \times \gamma_{w} \tag{1Mark}
\end{equation*}
$$

$\therefore W=0.9 \times 8$ liters $\times \frac{1000 \mathrm{~cm}^{3}}{1 \text { liter }} \times\left(\frac{1 \mathrm{ft}}{30.48 \mathrm{~cm}}\right)^{3} \times 62.4 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}=15.87 \mathrm{lb}$
$\therefore W=0.9 \times 8$ liters $\times \frac{1 \mathrm{~m}^{3}}{1000 \text { liter }} \times 9810 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}=70.63 \mathrm{~N}$
b) Mass on Earth $=$ Mass on Moon $=$ constant $M=S G \times \rho_{w} \times V o l .=S G \times \frac{\gamma_{w}}{g} \times V o l$.
$\therefore M=0.9 \times \frac{62.4 \frac{\mathrm{lb}}{f t^{3}}}{32.2 \frac{\mathrm{ft}}{\mathrm{s}^{2}}} \times 8$ liters $\times \frac{1000 \mathrm{~cm}^{3}}{1 l i t e r} \times\left(\frac{1 \mathrm{ft}}{30.48 \mathrm{~cm}}\right)^{3}=0.9 \times 1.94 \frac{\mathrm{slug}}{f t^{3}} \times 0.283 \mathrm{ft}^{3}=0.49 \mathrm{slug}$
$W=$ weight on earth $\times \frac{\text { gravity acceleration on Moon }}{\text { gravity acceleration on Earth }}=15.87 \mathrm{lb} \times \frac{1}{6}=2.64 \mathrm{lb}$

El-Mansoura University
Faculty of Engineering
Dept. of Irrigation \& Hydraulics
Second Year Civil Engineering

Mid-term Exam
Fluid mechanics
Nov. 4, 2017 (First term)
Allowed time: 1.5 Hours

1-a) A volume of mercury equal to 3 liters has a specific gravity of 13.6. (a) Determine its weight in pounds and in Newton's at the Earth's surface. (b) What would be its mass (in slugs) and its weight (in pounds) if located on the moon's surface where the gravitational attraction is one-sixth that at the Earth's surface? (4 marks)
a) Weight $W=$ Mass \times gravity acceleration $=$ Density \times Volume \times gravity acceleration

$$
=\rho \times V o l \times g=S G \times \rho_{w} \times \operatorname{Vol} \times g=S G \times \operatorname{Vol} \times \gamma_{w}
$$

$\therefore W=13.6 \times 3$ liters $\times \frac{1000 \mathrm{~cm}^{3}}{1 \text { liter }} \times\left(\frac{1 \mathrm{ft}}{30.48 \mathrm{~cm}}\right)^{3} \times 62.4 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}=89.9 \mathrm{lb}$
(1Mark)
$\therefore W=13.6 \times 3$ liters $\times \frac{1 \mathrm{~m}^{3}}{1000 \text { liter }} \times 9810 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}=400.2 \mathrm{~N}$
b) Mass on Earth $=$ Mass on Moon $=$ constant $M=S G \times \rho_{w} \times V o l .=S G \times \frac{\gamma_{w}}{g} \times V o l$.
$\therefore M=13.6 \times \frac{62.4 \frac{\mathrm{lb}}{f t^{3}}}{32.2 \frac{f t}{s^{2}}} \times 3$ liters $\times \frac{1000 \mathrm{~cm}^{3}}{1 l i t e r} \times\left(\frac{1 \mathrm{ft}}{30.48 \mathrm{~cm}}\right)^{3}=13.6 \times 1.94 \frac{\mathrm{slug}}{\mathrm{ft}^{3}} \times 0.106 \mathrm{ft}^{3}=2.8 \mathrm{slug}$
$W=$ weight on earth $\times \frac{\text { gravity acceleration on Moon }}{\text { gravity acceleration on Earth }}=89.9 \mathrm{lb} \times \frac{1}{6}=14.98 \mathrm{lb}$

1-b) The pressure outside the droplet of water of diameter 0.05 mm is $6 \mathrm{~N} / \mathrm{m}^{2}$. Calculate the pressure within the droplet if the surface tension of water is $0.00065 \mathrm{~N} / \mathrm{cm}$

Let the droplet with diameter d is cut into two halves. The forces acting on one half will be: 1) tensile force due to surface tension acting around the perimeter of the cut ($\sigma \pi d$) and 2) pressure force due to pressure intensity inside the droplet in excess of the outside pressure intensity ($p \pi d^{2} / 4$), these two forces will be equal and opposite under equilibrium conditions, then:

(a) DROPLET

(b) SURFACE TENSION

(c) PRESSURE FORCES
p. $\frac{\pi d^{2}}{4}=\sigma . \pi . d, \quad$ or $\quad \quad$ p $=\boldsymbol{p}_{\text {in }}-p_{o u t}=\frac{4 \sigma}{d}$
$\therefore p_{\text {in }}=p_{\text {out }}+\frac{4 \sigma}{d}=6 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{2}+\frac{4 \times 0.00065 \frac{\mathrm{~N}}{\mathrm{~cm}}}{0.005 \mathrm{~cm}}=0.5206 \frac{\mathrm{~N}}{\mathrm{~cm}^{2}}=5206 \mathrm{~Pa}$

2-a) Define what is the consistence unit system. Mention an example.
(2 Marks)
Consistent system: having a conversion factor of magnitude equal one.
$1 N=1 \mathrm{~kg} \times \underline{1} \mathrm{~m} / \mathrm{s}^{2}$
or 1 dyne $=1 \mathrm{gr} \times \underline{1} \mathrm{~cm} / \mathrm{s}^{2}$
or $1 p d l=1 l b_{m} x \underline{f t} / \mathrm{s}^{2}$
(1 Mark)

Dimensions	Mass M	Length (L)	Time (T)	Force (F)	Temperature Absolute (θ)	Temperature Ordinary (θ)
SI system	$\frac{\text { Kilogram }}{\underline{(k g)}}$	Meter (m)	$\frac{\text { Second }}{\underline{(s)}}$	Newton (N)*	$\begin{aligned} & \text { Kelvin }(K) \\ & K=C^{0}+273.15 \end{aligned}$	Celsius (C^{0})
Or Absolute metric system (cgs) /French system(FS)	gram (gr)	$\frac{\text { Centimeter }}{\text { (cm) }}$	$\frac{\text { Second }}{\underline{(s)}}$	Dyne*	$\begin{aligned} & \text { Kelvin }(K) \\ & K=C^{0}+273.15 \end{aligned}$	Celsius (C^{0})
Or English engineering ($E E$) system	Pound $\text { mass }\left(l b_{\underline{m}}\right)$	Foot (ft)	$\frac{\text { Second }}{(\underline{s})}$	Poundal $(p d l)^{*}[E E]$	Rankine $\left(R^{0}\right)$	Fahrenheit $\left(F^{0}\right)$

(1 Mark)

2-b) The absolute pressure of the air in the tank shown is measured to be 170 kPa . Determine the differential height h of the mercury column. The local atmospheric pressure is $102 \mathrm{KN} / \mathrm{m}^{2}$. ($\left.\gamma_{\mathrm{air}}=0\right)$
(4 Marks)

$P_{\text {air abs }}=170 \mathrm{kPa}=P_{1}$,

$$
\begin{equation*}
P_{2}=P_{3} \tag{1Mark}
\end{equation*}
$$

$\therefore P_{2}=P_{\text {air abs }}+0.3 m \times \gamma_{w}=P_{3}=h \times \gamma_{m}+0.75 \times \gamma_{o}+P_{\text {atm }}$
$\therefore 170 \frac{\mathrm{kN}}{\mathrm{m}^{2}}+0.3 \mathrm{~m} \times 9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}=h \times 13.6 \times 9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}+0.75 \mathrm{~m} \times 0.72 \times 9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}+102 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
$\therefore h \times 13.6 \times 9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}=170 \frac{\mathrm{kN}}{\mathrm{m}^{2}}+0.3 \mathrm{~m} \times 9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}-0.75 \mathrm{~m} \times 0.72 \times 9.81 \frac{\mathrm{kN}}{\mathrm{m}^{3}}-102 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
$\therefore h=0.492 m$
(2 Mark)

3-a) A uniform wooden beam (S.G. $=0.75$) is $3 f t X 3 f t X 10 f t$ and is hinged at A. At what angle θ° will the beam

$W=$ weight of the body $\downarrow=$ volume of the body $\times \gamma_{b o d y}=$ Length $\boldsymbol{L} \times$ cross section area $\boldsymbol{A} \times \gamma_{b o d y}$ $B=$ Uplift $\uparrow=$ submergened volume $\times \gamma_{w}=$ submergened length $\boldsymbol{X} \times$ cross section area $\boldsymbol{A} \times \gamma_{w}$

The body under equilibrium, then Σ moment $@ A=0.0$
$\therefore W \times \frac{L}{2} \times \cos \boldsymbol{\theta}=B \times\left(L-\frac{X}{2}\right) \times \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$
$\therefore L \times \boldsymbol{A} \times \boldsymbol{\gamma}_{\text {body }} \times \frac{L}{2}=X \times \boldsymbol{A} \times \boldsymbol{\gamma}_{\boldsymbol{w}} \times\left(L-\frac{X}{2}\right)$
(1 Mark)
$\therefore L \times S G_{\text {body }} \times \frac{L}{2}=X \times\left(L-\frac{X}{2}\right)$
$\therefore L^{2} \times S G_{b o d y}=2 X L-X^{2} \quad$ or $\quad X^{2}-2 X L+L^{2} \times S G_{b o d y}=0$
$\therefore X=\frac{+2 L \pm \sqrt{(-2 L)^{2}-4 L^{2} \times S G_{\text {body }}}}{2}$
$\therefore X=\frac{+20 \pm \sqrt{(-20)^{2}-4 \times 100 \times 0.75}}{2}=5 \mathrm{ft}$
$\sin \theta=\frac{1 m}{L-X}=\frac{1 m}{10 f t-5 f t} \times \frac{1 \mathrm{ft}}{0.3048 \mathrm{~m}}=0.656$

$$
\begin{equation*}
\therefore \theta^{\circ}=41^{\circ} \tag{1Mark}
\end{equation*}
$$

3-b) A tank has a bottom with $4 f t$ wide $x 8 f t$ long is filled to a depth of $2 f t$ with a liquid of S.G. $=0.9$. What will be the force in pounds on the bottom of the vessel (a) when being accelerated vertically upwards at $15 \mathrm{fts}^{-2},(b)$ when the acceleration ceases (stop) and the vessel continues to move at a constant velocity of $8 \mathrm{fts}^{-1}$ vertically upwards?
(3Marks)
a) Force on tank bottom $\mathrm{F}=$ pressure at the tank bottom PX bottom area A $P=\gamma h\left(1+\frac{a_{z}}{g}\right)=S G \times \gamma_{w} h\left(1+\frac{a_{z}}{g}\right)=0.9 \times 62.4 \frac{l b}{f t^{3}} \times 2 f t \times\left(1+\uparrow \frac{15}{32.2}\right)=112.3 \frac{l b}{f t^{2}} \times 1.466=164.6 \frac{l b}{f t^{2}}$
$\therefore F=4 f t \times 8 f t \times 164.6 \frac{l b}{f t^{2}}=5267.6 l b$
b) When the tank is moving with constant velocity vertical acceleration $\mathrm{a}_{\mathrm{z}}=0$
$\therefore F=S G \times \gamma_{w} h A=112.3 \frac{l b}{f t^{2}} \times 4 f t \times 8 f t=3593.6 l b$
4) A long, solid cylinder of radius $r=2 m$ hinged at point A is used as an automatic gate. When the liquid depth reaches $6 m$, the cylindrical gate opens by turning about the hinge at point A. Determine (a) the hydrostatic force acting on the cylinder and its line of action when the gate opens and (b) the weight of the cylinder per m length of the cylinder. (S.G. ${ }_{\text {liquid }}=0.9$)

a) Horizontal hydrostatic forces acting on the cylinder are $\mathrm{H}_{1} \& \mathrm{H}_{2}$
$H_{1}=\gamma_{l} \times(L-r) \times r \times$ length $=0.9 \times 9810 \frac{N}{m^{3}} \times 4 m \times 2 m \times 1 m=70632 N \quad$ (1 Mark)
$H_{2}=\gamma_{l} \times r \times \frac{r}{2} \times$ length $=0.9 \times 9810 \frac{N}{m^{3}} \times 2 m \times 1 m \times 1 m=17658 N$ (1 Mark)
$H=H_{1}+H_{2}=70632+17658=88290 N$
Moment of $\mathrm{H} @ \mathrm{~A}=\Sigma$ moment of their components @ A
$\therefore Y=\frac{H_{1} y_{1}+H_{2} y_{2}}{H}=\frac{70632 \times 1 \mathrm{~m}+17658 \times 4 / 3 \mathrm{~m}}{88290}=1.066 \mathrm{~m}$
Or $H=\gamma A h_{c}=0.9 \times 9810 \frac{N}{m^{3}} \times 2 m \times 1 m \times 5 m=88290 \mathrm{~N}$
$Y=\frac{r}{2}+\frac{I_{x c}}{A h_{c}}=\frac{2 m}{2}+\frac{\frac{1 m \times(2 m)^{3}}{12}}{2 m \times 1 m \times 5 m}=1+\frac{\frac{2}{3}}{10}=1.066 m$
(2 Marks)
Vertical hydrostatic forces acting on the cylinder are $\mathrm{V}_{1} \& \mathrm{~V}_{2}$
$V_{1}=\gamma_{l} \times(L-r) \times r \times$ length $=0.9 \times 9810 \frac{N}{m^{3}} \times 4 m \times 2 m \times 1 m=70632 N$
$V_{2}=\gamma_{l} \times \frac{\pi r^{2}}{4} \times$ length $=0.9 \times 9810 \frac{N}{m^{3}} \times \frac{\pi(2 m)^{2}}{4} \times 1 \mathrm{~m}=27748 \mathrm{~N}$
$V=V_{1}+V_{2}=70632+27748=98380 N$
Moment of V @ $A=\Sigma$ moment of their components @ A
$\therefore X=\frac{V_{1} X_{1}+V_{2} X_{2}}{V}=\frac{70632 \times 1 m+27748 \times\left(2 m-\frac{4 r}{3 \pi} m\right)}{98380}=\frac{70632 \times 1 m+27748 \times 1.15 \mathrm{~m}}{98380}=1.042 \mathrm{~m}$
(1 Mark)
Total Resultant of hydrostatic forces R
$R=\sqrt{H^{2}+V^{2}}=\sqrt{88290^{2}+98380^{2}}=132188 \mathrm{~N}$
(1 Mark)
$\tan \alpha=\frac{V}{H}=\frac{98380}{88290}=1.0576$
$\therefore \alpha=46.6^{0}$
b) \sum moment for all forces @ $A=0.0$
$\therefore W=\frac{H . Y+V . X}{r}=\frac{88290 \times 1.066+98380 \times 1.042}{2 m}=98314 \mathrm{~N}$
(2 Marks)

