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5: Laboratory experiments

Experiment1: Batch Gradient Descent with Momentum
dale alily
Batch Gradient Descent with Momentum 4 23 aul
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— ) Acting like a low-pass filter, momentum allows the network to ignore small features
in the error surface.

[ I The magnitude of the effect that the last weight change is allowed to have is
mediated by a momentum constant, mc, which can be any number between 0 and 1.

— 7 When the momentum constant is 0, a weight change is based solely on the gradient.

— 71 When the momentum constant is 1, the new weight change is set to equal the last
weight change and the gradient is simply ignored.

— The gradient is computed by summing the gradients calculated at each training
example, and the weights and biases are only updated after all training examples have
been presented.

— The traingdm function is invoked using the same steps shown above for the traingd
function, except that the mc, Ir and max_perf_inc learning parameters can all be set.
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Op=[ -1-122;0505];
Ot=[ -1-111];
| net=newff(minmax  (p),[3,1],{"tansig’,'purelin’},'traingdm’);
] net.trainParam.show = 50;
1 net.trainParam.lr = 0.05;
| net.trainParam.mc = (.9;
net.trainParam.epochs = 300;
[] net.trainParam.goal = le-5;
| [net,tr]=train(net,p,t);
TRAINGDM, Epoch 0/300, MSE 3.6913/1e-05, Gradient 4.54729/1e-10 - 44 -
TRAINGDM, Epoch 50/300, MSE 0.00532188/1e-05, Gradient 0.213222/1e-10
TRAINGDM, Epoch 100/300, MSE
6.34868e-05/1e-05, Gradient 0.0409749/1e-10 TRAINGDM, Epoch 114/300, MSE 9.06235e-

06/1e-05,
Gradient 0.00908756/1e-10 TRAINGDM, Performance goal met.

| a = sim(net,p)[’
This method is often too slow for practical problems.

C T In this section we discuss several high performance algorithms that can converge
from ten to one hundred times faster than the algorithms discussed previously.

All of the algorithms operate in the batch mode and are invoked using train.
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Experiment 2: Variable Learning Rate (traingda, traingdx)
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Variable Learning Rate (traingda, traingdx) 423 awl
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This algorithm uses heuristic techniques, which were developed from an analysis of the
performance of the standard steepest descent algorithm.
= The performance of the algorithm is very sensitive to the proper setting of the learning
rate. If the learning rate is set too high, the algorithm may oscillate and become unstable.
If the learning rate is too small, the algorithm will take too long to converge. An adaptive
learning rate will attempt to keep the learning step size as large as possible while keeping
learning stable.
[ An adaptive learning rate requires some changes in the training procedure used by traingd.
[ First, the initial network output and error are calculated.
[ At each epoc h new weights and biases are calculated using the current learning rate.
New outputs and errors are then calculated.
1 When a larger learning rate could result in stable learning, the learning rate is increased.
0 When the learning rate is too high to guar antee a decrease in error, it gets decreased until stable
learning resumes.

;Ao il AT & glad

Here is how it is called to train our previous two-layer network:
Op=[ -1-122,0505];
Ot=[ -1-111],
[ net=newff{minmax(p),[3.1],{'tansig".'purelinyaingda’);
™ net.trainParam.show = 50;
[1 net.trainParam.Ir = 0.05;
[ net.trainParam.Ir_inc = 1.05;
(] net.trainParam.epochs = 300;
[ net.trainParam.goal = le
] [net,tr]=train(net,p.t);
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TRAINGDA, Epoch 0/300, MSE 1.71149/1e-05, Gradient
2.6397/1e-06 TRAINGDA, Epoch 44/300, MSE 7.47952e-06/1e-05,
Gradient 0.00251265/1e-06

TRAINGDA, Performance goal met.

a0 = sim(net,p)
a=-1.0036 -0.9960 1.0008 0.9991

s il A58L,

The function traingdx combines adaptive learning rate with momentum training. It is
invoked in the same way as traingda, except that it has the momentum coefficient mc
as an additional training parameter.
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Experiment 3: Creating Discrete-Time Models
dale by
Creating Discrete-Time Models :4: 23 aul
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Discrete time systems (sampled) are dynamic systems in which one or more variables can
change only at discrete instants of time.

. These instants (denoted by tk , k=0,1,2,..) may specify the time at which some physical
measurement is performed or the time at which the memory of a digital computer is read
out.

. The time interval between two discrete instants is taken to be short so that the data for the
time between these discrete instants can be approximated by simple interpolation.

. Discrete time sys. Differs from continuous ones in that the signals for a discrete systems are in
sampled data form.

. Discrete time sys.s arise in practice whenever the measurements necessary for control are
obtained in an intermittent fashion.. Or when computer is time shared by several plants so
that a control signal is sent out to each plant periodically or whenever a digital computer is
used to perform computations necessary for control.

. Many modern industrial control systems are discrete systems since they include some
elements whose inputs and/or outputs are discrete in time.

L Jidy) M The syntax for creating discrete-time models is similar to that for continuous-
time models, except that you must also provide a sampling time (sampling interval in
seconds).

For example, to specify the discrete-time
transfer function: with sampling period Ts =
0.1s, type:

» num=[1-11];

> den=[1-1.850.9];

» H=
tf(num,
den,0.1
) or
equival
ently:

» z=tf('2',0.1);

|Page Y




» H=(z-1)/(z"2-1.85*%z+0.9);

Similarly, to specify the discrete-time
state-space model: with sampling period
Ts=0.1s, type:

sys =ss(.5,1,.2,0,0.1);

Recognizing Discrete-Time Systems

There are several ways to determine if your LTI model is discrete:

The display shows a nonzero sampling time value
sys.Ts or get(sys,'Ts') return a nonzero sampling time
value. isdt(sys) returns true.

For example, for the transfer function H

specified above, H.Ts ans = 0.1000 isdt(H)

ans =1

The following plots show these
characteristic traits: step(H)

Step Response

AN
Y/
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