Handbook 2020

A B. Sc. Program in Communications and Computers Engineering (CCE) with Credit Hours System

1. Course Coding System

To prepare the student for the above targeted educational objectives, a set of program outcomes, that describes what students are expected to know and able to do by the time of graduation, has been adopted. The student must successfully pass a number of courses totaling 160 credit hours in order to obtain a bachelor's degree in Communications and Computers Engineering Based on credit hours systems (CHS) from the Faculty of Engineering, Mansoura University.

The following figure shows courses coding system according to reference framework NARS 2018, where the course code is composed of three letters and three digits. The letters indicate the course specialization department. The first digit indicates the year 0, 1, 2, 3, or 4. The second digit between 1 and 9 displays the discipline in the major. The third digit is the course sequence in each discipline.

Figure (1): Courses coding system

2. Structure and Contents of the CCE Program

The structure of the Communicatins and Computes engineering program consists of 160 credit hours distributed as follows:

2.1 University Requirements

The main purpose of university education is not only to prepare students for successful careers but also to provide them with the knowledge and skills necessary to develop a rational and successful personal

identity. In addition, Mansoura University assists students in gaining an appreciation of the natural and cultural environments in which they live and their roles in society and community services. The university's requirements for bachelor's programs consist of 13 credit hours (8.12% of the total 160 credit hours), which are met by completing six (6) courses that are reflected in table 1

		lit	SWL	Marks Distribution					
Code	Course Name	Cree	Total S	Mid Term	semester Works	Lab	Final Term		
UNR 061	English (1)	2	5	20	30		50		
UNR 062	English (2)	2	5	20	30		50		
UNR 171	History of Engineering and Technology	1	2	20	30		50		
UNR 241	Communication and Presentation Skills	2	5	20	30		50		
UNR 281	Law and Human Rights	2	4	20	30		50		
UNR 461	Ethics and Morals of The Profession	2	4	20	30		50		
UNR 471	Marketing	2	4	20	30		50		
	Total	13	29						

 Table (1): The University Requirements (13 Credit hours)

2.2 Faculty Requirements

The faculty requirements provide students with the knowledge and skills necessary to develop a successful engineer. Common college requirements are applied in all credit hour programs. The standard requirement of faculty courses includes basic knowledge courses for all engineering graduates such as mathematics, physics, mechanics, engineering drawing, design, manufacturing, and chemistry. The faculty requirements for the Communications and Computers Engineering program consist of 45 credit hours (28.125% of the total 160 credit hours), which are completed by completing sixteen (16) mandatory courses, as listed in Table 2.

 Table (2): The College Requirements (45 Credit hours)

Codo	Course Name	dit	tal /L	Marks Distribution					
Coue	Course Maine	Cre	Tot SW	Mid Term	semester Works	Lab	Final Term		
BAS011	Mathematics (1)	3	8	20	30		50		
BAS021	Mechanics (1)	3	8	20	30		50		
BAS012	Mathematics (2)	3	8	20	30		50		
BAS022	Mechanics (2)	3	8	20	30		50		
BAS031	Physics (1)	3	9	20	20	10	50		
BAS032	Physics (2)	3	9	20	20	10	50		

BAS041	Principals of Engineering Chemistry	3	9	20	20	10	50
PDE051	Principles of Manufacturing Engineering	3	8	20	20	10	50
PDE052	Engineering Drawing	3	10	20	30		50
ENG111	Technical Reports Writing	2	6	20	30		50
BAS113	Mathematics (3)	3	8	20	30		50
BAS114	Mathematics (4)	3	8	20	30		50
BAS115	Statistics and Probabilty Theory	2	6	20	30		50
ELE151	Electrical Power and Machines	3	8	20	30		50
BAS215	Mathematics (5)	3	8	20	30		50
ENG412	Project Management	2	6	20	30		50
	Total	45	127				

2.3 Major and Minor Requirements for CCE

The major and minor requirements in the Communications and Computers engineering program consist of 102 credit hours (63.75% of a total of 160 credit hours), which are fulfilled by completing 26 compulsory courses equivalent to 77 credit hours, 6 elective courses equivalent to 18 credit hours as shown in the following tables 3 and 4.

Table 3: Compulsory Courses for Specialization Requirements

	Comme Norma	dit	al L	Ν	Groups			
Code	Course Name	Cree	Tot: SW	Mid Term	semester Works	Lab	Final Term	Name
CSE	Introduction to Computer Systems	3	9	20	20	10	50	
CSE	Digital Design (1)	3	8	20	20	10	50	
CSE	Algorithms and Data Structure	3	9	20	20	10	50	
CSE	Control (1)	3	8	20	30	-	50	
CSE	Data Base systems	3	9	20	20	10	50	
CSE	Digital Design (2)	3	8	20	30	-	50	
CSE	Computer Architecture	3	9	20	20	10	50	
CSE	Operating Systems	3	9	20	20	10	50	
CSE	Computer Networks (1)	3	9	20	20	10	50	
CSE	Microprocessors	3	8	20	30		50	
ECE	Electronic Basics	3	9	20	20	10	50	
ECE	Electrical Circuits	3	8	20	30		50	
ECE	Electronic Circuits	3	9	20	20	10	50	
ECE	Signals and Systems	2	6	20	30		50	
ECE	Analog Communication Systems	3	8	20	30		50	
ECE	Digital Communication Systems	3	8	20	30		50	
ECE	Digital Signal Processing	3	8	20	30		50	
ECE	Solid State Electronics	3	8	20	30		50	
CSE 314	Computer Drawings	3	9	20	20	10	50	

(77 credit hours, 48.125% of the total 160)

CSE 315	Embedded Systems	3	9	20	20	10	50	
ECE	Electromagnetic Fields	3	8	20	30		50	
ECE	Waveguides and Antennas	3	9	20	20	10	50	
CSE 411	Advanced Programming Techniques	3	9	20	20	10	50	
CSE 421	Programmable Logic Control	3	9	20	20	10	50	
CSE 422	Artificial Intelligence	3	9	20	20	10	50	
ECE 431	Mobile Communications	3	8	20	30		50	
	Total	77	220					

Table 4: Elective Courses for Specialization Requirements

In communications and computer engineering

Code	Course Name	dit	al L	Ν	n	Groups		
Code	Course Name	Cre	Tot SW	Mid Term	semester Works	Lab	Final Term	Name
CCE 311	Integrated Circuits	3	8	20	30		50	
CCE 331	Optical Fiber	3	8	20	30		50	
CCE 332	Microwave Engineering	3	8	20	30		50	
CCE 341	Distributed systems	3	8	20	30		50	
CCE 342	Multimedia	3	8	20	30		50	
CCE 343	Computer System	3	8	20	30		50	
CCE 344	Software Engineering	3	8	20	30		50	
CCE 345	Control (2)	3	8	20	30		50	
	Leve	el 4()0					
CCE 411	Industrial Electronics	3	8	20	30		50	
CCE 412	Introduction to	3	8	20	30		50	
CCE 421	Information Theory	3	8	20	30		50	
CCE 422	Selected Topics in Communications Engineering	3	8	20	30		50	
CCE 423	Satellite Communications	3	8	20	30		50	
CCE 424	Communication Security	3	8	20	30		50	
CCE 425	Adapative Filters	3	8	20	30		50	
CCE 426	Phonics	3	8	20	30		50	
CCE 427	Wireless Communications	3	8	20	30		50	
CCE 441	Computer Networks (2)	3	8	20	30		50	
CCE 442	Design and Programming of Web server	3	8	20	30		50	
CCE 443	Big Data Analytics	3	8	20	30		50	
CCE 444	Selected Topics in ComputersEngineering	3	8	20	30		50	
CCE 445	Game Theory and Decision	3	8	20	30		50	
CCE 446	Internet Engineering	3	8	20	30		50	

(18 credit hours 11.25% of the total 160 credit hours)

CCE 447	Languages Compilers	3	8	20	30	 50	
CCE 461	Digital Image Processing	3	8	20	30	 50	
CCE 462	Biomedical Engineering	3	8	20	30	 50	
CCE 463	Communication Engineering for Genetics and	3	8	20	30	 50	
CCE 464	Neural Engineering	3	8	20	30	 50	

2.4 Project and Practical and Field Training

Table 5 shows that the field training and the graduation projects are equivalent to 7 credit hours

Code	Course Name	edit	SWL	Marks Distribution					
Couc		Cre	Total	Mid Term	semester Works	Lab	Final Term		
CCE 271	Field Training (1)	1	3						
CCE 371	Field Training (2)	1	3						
CCE 481	Graduation Project (1)	2	6		50		50		
CCE 482	Graduation Project (2)	3	9		50		50		
	Total	7	21						

Table 5: Graduation projects and field training(7 credit hours, 4.375% of the total 160)

2.5 CCE Program Curriculum

The curriculum presents the credit units, weekly contact hours either for lectures, tutorial and practical work for all courses. The curriculum also presents SWL and Marks distribution in addition to the senior project and the summer training according to **NARS 2018**. It is clear from the table that the total contact hours (lectures + tutorial+ practical) in addition to the hours of self-learning range from 44 to 49 hours per week for all levels with an average of 46 hours per week.

			I	Iours	/Weel	K							
Code	Course Name	Credit	Lecture	Tutorial	Lab.	Free work	IWL	Mid Term	Semester Work	Lab	Final Term	Total	Prerequisites
BAS 011	Mathematics (1)	3	2	2	•	4	8	20	30	•	50	100	-
BAS 021	Mechanics (1)	3	2	2	-	4	8	20	30	-	50	100	-
BAS 031	Physics (1)	3	2	1	1.5	4.5	9	20	20	10	50	100	-
BAS 041	Principals of Engineering Chemistry	3	2	1	1.5	4.5	9	20	20	10	50	100	-
PDE 052	Engineering Drawing	3	2	2	•	6	10	20	30	-	50	100	-
UNR 061	English (1)	2	1	2	•	2	5	20	30	•	50	100	-
	Total	17	11	10	3	25	49	120	160	20	300	600	-
Total Contact hours = 24 hrs/week, Total SWL = 49 hrs/week													

First Semester

Second Semester

			I	Hours	/Weel	k			Mark	s			
Code	Course Name	Credit	Lecture	Tutorial	Lab.	Free work	TMS	Mid Term	Semester Work	Lab	Final Term	Total	Prerequisites
BAS 012	Mathematics (2)	3	2	2	-	4	8	20	30	•	50	100	BAS011
BAS 022	Mechanics (2)	3	2	2	•	4	8	20	30	•	50	100	BAS021
BAS 032	Physics (2)	3	2	1	1.5	4.5	9	20	20	10	50	100	-
CSE 042	Intduction to Computer Systems	3	2	1	1.5	4.5	9	20	20	10	50	100	-
PDE 051	Principles of Manufacturing Engineering	3	2	-	3	3	8	20	20	10	50	100	-
UNR062	English (2)	2	1	2	-	2	5	20	30	-	50	100	UNR061
	Total	17	11	8	6	22	47	120	160	30	300	600	
Total Contact hours = 25 hrs/week, Total SWL = 47 hrs/week													

			J	Hours	/Weel	ĸ			Mark	s Disti	ributio	n	
Code	Course Name	Credit	Lecture	Tutorial	Lab.	Free work	TMS	Mid Term	Semester Work	Lab	Final Term	Total	Prerequisites
BAS 113	Mathematics (3)	3	2	2	•	4	8	20	30	•	50	100	BAS 012
UNR 171	History of Engineering and Technology	1	1	-	-	1	2	20	30	-	50	100	-
ECE 121	Electrical Circuits	3	2	2	•	4	8	20	30	•	50	100	BAS 032
CSE 141	Digital Design (1)	3	2	1	1	4	8	20	20	•	50	100	CSE 042
ENG 111	Technical Reports Writing	2	1	2	•	3	6	20	30	10	50	100	UNR 061
ECE 122	Solid State Electronics	3	2	2	-	4	8	20	30	-	50	100	BAS 031 BAS 032
	Total	15	10	9	1	20	40	120	170	10	300	600	
Total Co	Total Contact hours = 20 hrs/week, Total SWL = 40 hrs/week												

Third Semester

Fourth Semester

			I	Hours	/Weel	K							
Code	Course Name	Credit	Lecture	Tutorial	Lab.	Free work	SWL	Mid Term	Semester Work	Lab	Final Term	Total	Prerequisites
BAS 114	Mathematics (4)	3	2	2	-	4	8	20	30	-	50	100	BAS 113
CSE 112	Algorithms and Data Structure	3	2	1	1.5	4.5	9	20	20	10	50	100	CSE 042
BAS 115	Statistics and Probabilty Theory	2	1	2	0	2	5	20	30	-	50	100	BAS 012
ECE 131	Signals and Systems	2	2	0	0	4	6	20	30	-	50	100	BAS 113
ECE 123	Electronic Basics	3	2	1	1.5	4.5	9	20	20	10	50	100	ECE 121 ECE 122
ELE 151	Electrical Power and Machines	3	2	2	-	4	8	20	30	-	50	100	ECE 121
	Total	16	11	8	3	23	45	120	160	20	300	600	
	Total Contact hours = 22 hrs/week, Total SWL = 45 hrs/week												

Chapter Three: Bachelor's Degree Program in Communications and Computers Engineering (CCE) with Credit Hours System

			I	Iours	/Weel	K			Mark	s Dist	ributio	n	
Code	Course Name	Credit	Lecture	Tutorial	Lab.	Free work	IWL	Mid Term	Semester Work	Lab	Final Term	Total	Prerequisites
BAS 215	Mathematics (5)	3	2	2	-	5	8	20	30	-	50	100	BAS 113
CSE 211	Digital Design (2)	3	2	2	•	5	9	20	30	-	50	100	CSE 141
CSE 212	Data Base Systems	3	2	-	3	4	9	20	20	10	50	100	CSE 112
ECE 231	Digital Signal Processing	3	2	2	-	5	9	20	30	-	50	100	ECE 131
UNR 241	Communication and Presentation Skills	2	2	-	-	3	5	20	30	-	50	100	-
	Total	14	10	6	3	22	41	100	140	10	250	500	
	Total Contact h	ours	= 19	hrs/	week	, Tot	al SV	VL =	41 hr	s/we	ek		

Fifth Semester

Sixth Semester

			I	Hours	/Weel	K			Marks	s Dist	ributio	n	
Code	Course Name	Credit	Lecture	Tutorial	Lab.	Free work	SWL	Mid Term	Semester Work	Lab	Final Term	Total	Prerequisites
CSE 221	Control (1)	3	2	2	-	4	8	20	30	-	50	100	BAS 113 ECE 121
CSE 213	Computer Architecture	3	2	-	2	5	9	20	20	10	50	100	CSE 211
ECE 232	Analog Communication Systems	3	2	2	-	4	8	20	30	-	50	100	BAS 114 ECE 131
ECE 221	Electronic Circuits	3	2	-	2	5	9	20	30	10	50	100	ECE 123
UNR 281	Law and Human Rights	2	2	-	-	2	4	20	30	-	50	100	-
CCE 271	Training (1)	1	-	-	-	-	3	-	-	-	-	-	-
	Total	15	10	4	4	20	41	100	140	20	250	500	
	Total Contact h	ours	= 18	hrs/	week	, Tot	al SV	VL =	41 hr	s/we	ek		

			Ι	Hours	/Weel	X			Mark	s Dist	ributio	n	
Code	Course Name	Credit	Lecture	Tutorial	Lab.	Free work	IWL	Mid Term	Semester Work	Lab	Final Term	Total	Prerequisites
CSE 311	Operating Systems	3	2	-	2	5	9	20	20	10	50	100	CSE 213
ECE 331	Digital Communication Systems	3	2	2	-	4	8	20	30	-	50	100	ECE 232
CSE 313	Microprocessors	3	2	2	-	5	9	20	30	-	50	100	CSE 213
ECE 341	Electromagnetic Fields	3	2	2	-	4	8	20	30	-	50	100	BAS 113 ECE 121
CSE 312	Computer Networks (1)	3	2	-	2	4	8	20	20	10	50	100	CSE 042
	Total	15	10	6	4	22	42	100	130	20	250	500	
	Total Contact hours = 20 hrs/week, Total SWL = 42 hrs/week												

Seventh Semester

Eighth Semester

			ł	Iours	/Weel	k			Mark	s Dist	ributio	n	
Code	Course Name	Credit	Lecture	Tutorial	Lab.	Free work	TMS	Mid Term	Semester Work	Lab	Final Term	Total	Prerequisites
ECE 342	Waveguides and Antennas	3	2	1	1.5	4.5	9	20	20	10	50	100	ECE 341
Elective	Elective course (1)	3	2	2	-	4	8	20	30	-	50	100	Course
Table 13	Elective course (2)	3	2	2	-	4	8	20	30	-	50	100	Specs.
CSE 315	Embedded Systems	3	2	1	1.5	4.5	9	20	20	10	50	100	CSE 213
CSE 314	Computer Drawing	3	2	-	2	5	9	20	20	10	50	100	CSE 042
CCE 371	Field Training (2)	1	-	-	-	-	3	-	-	-	-	-	CCE 271
	Total	16	10	6	5	22	46	100	120	30	250	500	
	Total Contact h	ours	= 21	hrs/v	veek	, Tota	al SV	VL =	46 hr	s/we	ek		

			I	Iours	/Weel	K			Mark	s Disti	ributio	n	
Code	Course Name	Credit	Lecture	Tutorial	Lab.	Free work	SWL	Mid Term	Semester Work	Lab	Final Term	Total	Prerequisites
CCE 481	Graduation Project (1)	2	1	-	3	2	6	-	50	-	50	100	Level 400
ECE 431	Mobile Communications	3	2	2	-	4	8	20	30	-	50	100	ECE 331
Elective	Elective course (3)	3	2	2	-	4	8	20	30	-	50	100	Course
Table 13	Elective course (4)	3	2	2	-	4	8	20	30	-	50	100	Specs.
CSE 411	Advanced Programming Techniques	3	2	-	2	5	9	20	20	10	50	100	CSE 042
UNR 461	Ethics and Morals of The Profession	2	2	-	-	4	6	20	30	-	50	100	-
ENG 412	Project Management	2	1	2	•	2	5	20	30	•	50	100	-
	Total	18	12	8	5	25	50	120	220	10	350	700	
	Total Contact h	nours	= 25	hrs/	week	. Tot	al SV	VL =	50 hr	s/we	ek		

Ninth Semester

Tenth Semester

			I	Hours	/Weel	K			Marks	5 Dist1	ributio	n	
Code	Course Name	Credit	Lecture	Tutorial	Lab.	Free work	IWL	Mid Term	Semester Work	Lab	Final Term	Total	Prerequisites
CCE 482	Graduation Project (2)	3	1	-	6	2	9	-	50	-	50	100	CCE 481
Elective	Elective course (5)	3	2	2	-	4	8	20	30	-	50	100	Course
Table 13	Elective course (6)	3	2	2	-	4	8	20	30	-	50	100	Specs.
CSE 421	Programmable Logic Control	3	2	1	1.5	4.5	9	20	20	10	50	100	CSE 221
CSE 422	Artificial Intelligence	3	2	1	1.5	4.5	9	20	20	10	50	100	CSE 112
UNR 471	Marketing	2	2	-	-	4	6	20	30	-	50	100	-
	Total	17	11	6	9	23	49	100	180	20	300	600	
	Total Contact h	ours	= 26	hrs/	week	, Tot	al SV	VL =	49 hr	s/we	ek		

3. CCE Program Courses Syllabi 5.1. University Requirements:

UNR061				Eng	lish (1)				Prerequisites						
2 Cr	Lecture	Lecture 1 Tutorial 2 Lab Semester 1 st													
Main skills of scientific past presenting not set the set of the s	Main skills of the English language - listening to short and long conversations - reading scientific passages - writing reports, summaries, and scientific articles - speaking and presenting new ideas														
References:															

Mark Ibbotson, Cambridge English for Engineering Student's book free, Cambridge press 2011

UNR062				Eng	lish (2)				Prerequisites					
2 Cr	2 CrLecture1Tutorial2LabSemester2 nd UNR061													
Analysis and for language	l interpretat tests.	ion o	f engineerii	ng iss	ues - sum	mariziı	ng engineerii	ng issu	es - preparation					
Deferences														

References:

Mark Ibbotson, Cambridge English for Engineering Student's book free, Cambridge press 2011

UNR 171		His	story of En	ginee	ering and	Techn	ology		Prerequisites
1 Cr	Lecture	1	Tutorial		Lab.		Semester	3 rd	

Engineering history: Art, Science, Engineering and technology - Role of engineering and technology in development and establishment of civilizations -Technology and environment - Examples on development of engineering activity.

References:

 Roger S. Kirby, Engineering in History, Dover Publications Inc. New York, United States, 1990, ISBN10 0486264122

UNR281			Law a	und H	luman Ri	ights			Prerequisites		
2 Cr	Lecture	2	Tutorial		Lab.		Semester	6 th			
Systems and laws of institutions - Introduction to Accounting - Labor legislation and laws											
governing engineering professions - Industrial security legislation and environment - Historical											
philosophica	l origins of	hum	an rights - i	intern	national so	ources of	of human rig	ghts - n	ational sources		

of human rights - global bodies based on the protection of human rights.

UNR241		Communication and Presentation Skills											
2 Cr	Lecture	1	Tutorial	2	Lab.	1	Semester	5 th					
Communicat contact, voic Using visual	Communication skills - Presentation planning and preparation - Delivery skills such as eye contact, voice control, gestures, body language and appearance - Presenter's characteristics - Using visuals - Presentation structure - Elevator Pitch												
References: Joan van En M. Wa Mut	References: Joan van Emden, Lucinda Becker, Presentation Skills for Students, 3rd Edition, Red Globe Press, 2016 Ma Matura, S. Murapiki, P. Kugle, P. Super Communication Skills, A University Book, Supers Publishers, 2016												

- Ian Tuhovsky, Wendell Wadsworth, Communication Skills Training, Ian Tuhovsky, 2015
- Tabitha Wambui, Alice W. Hibui, Elizaeth Gathuthi, "Communication skills " Vol.1, Students' coursebook, LAP LAMBERT Academic Publishing, 2012

UNR461		Ε	thics and N	Mora	ls of The	Profes	sion		Prerequisites				
2 Cr	2 Cr Lecture 2 Tutorial Lab Semester 9 th												
General principles of professional ethics - Commitments to society - Responsibilities of the													
engineer - D	etection of ^v	viola	tions - Beh	avior	- Case stu	idies ai	nd general is	sues.					

References:

- Lizabeth A. Stephan, David R. Bowman, William J. Park, Benjamin L. Sill, Matthew W. Ohland, "Thinking like an engineer", Published by Pearson 2018.
- Harris, C. E., Jr., Pritchard, M. S., & Rabins, M. J. Engineering Ethics. Second edition. Belmont, CA: Wadsworth, 2000

UNR471				Prerequisites								
2 Cr	Lecture	2	Tutorial		Lab.		Semester	10 th				
Principles of	products m	oducts marketing - Marketing research - Customers buying behavior - Marketing										
mix - Plotting marketing strategy - Building marketing plan - Pinpointing the target market -												
Marketing of	on the world wide web - Branding strategy - Developing new products - Advertising											
and promotio	and promotions - Costing and pricing strategies - Case studies on products marketing											
References:												
Principles of Marketing, University of Minnesota Libraries Publishing, 2015, ISBN 13: 9781946135193												

4.2. Faculty Requirements:

BAS011				Prerequisites								
3 Cr	Lecture	Lecture 2 Tutorial 2 Lab Semester 1 st										
Calculus: Fu	nction (defi	on (definition - theorems) - Basic functions - limits - Continuity - Derivation -										
definition - t	heorems - t	eorems - types - higher orders - Applications on derivatives - partial derivatives -										
indefinite int	itegral - theories and properties of integration.											
Algebra: Bin	gebra: Binomial theorem (with any exponent and applications) - Partial Fractions - Theory											
of Equations - Matrices - System of linear equations - Gauss elimination method.												
References:	References:											
 Akhtar & Ahsan, Textbook of Differential Calculus, second edition, 2009, PHI Learning Private Limited. 												

Alan Jeffrey, Matrix operations for Engineers and Scientists, 2010, Springer Science & Business Media.

BAS021			Ν	Mech	anics (1)				Prerequisites			
3 Cr	Lecture	2	Tutorial	2	Lab.		Semester	1 st				
Newton's law	Newton's laws - Types of forces: coplanar forces: Rectangular components of vector (1D, 2D,											
Space), Forc), Forces in space - Equilibrium of a particle - Conditions, Free-body diagram - Moment											
- Couple mo	ment - Resu	nt - Resultant of a system of forces and couples as a force and couple system -										
General proc	edure for re	dure for reducing force and couple systems - Equilibrium of a rigid body -										
Conditions of	ons of equilibrium of a rigid-body. free body diagrams – friction											
References:												
R.C. Hibbe	ler, "Engineer	ing M	echanics: Sta	tics an	nd Dynamics	5, 14th E	dition", Pearso	on Prenti	ce Hall, New			
Jersey, 201	16.											
 J. L. Meria 	n, L. G. Kriage, and J. N. Botton, "Engineering Mechanics: Statics, 8th Edition", John Wiley & Sons,											
New York,	ork, 2016.											
BAS012	Mathematics (2) Prerequisites											

3 Cr	Lecture	2	Tutorial	2	Lab.		Semester	3 rd	BAS011
Integral Cal	ulus. Dofin	ita ir	togral Ma	thod	of integr	ation	Application	son da	finita

<u>Integral Calculus:</u> Definite integral - Methods of integration - Applicationson definite integral (plane area - volume of revaluation - length of a plane curve - area of surfaces of revolution) - improper integral.

<u>Analytic Geometry:</u> Equations of second degree - Equation of pair of straight lines -Translation of axes - Conic sections - parabola - ellipse - hyperbola) Equation of plane -Equation of sphere.

References:

- Jumarie, G., Fractional Differential Calculus for Non-Differentiable Functions: Mechanics, Geometry, Stochastics, Information Theory. 2013: LAP Lambert Academic Publishing.
- Hestenes, D. and G. Sobczyk, Clifford algebra to geometric calculus: a unified language for mathematics and physics. Vol. 5. 2012: Springer Science & Business Media.

Grossman, S.I., Multivariable calculus, linear algebra, and differential equations. 2014: Academic Press.

BAS022		Mechanics (2)									
3 Cr	Lecture	Lecture 2 Tutorial 2 Lab Semester 2 ^{ed}									

Kinematics of a particle: curvilinear motion - Normal and tangential components. - Newton's laws - motion of projectiles - Work and energy of a particle - applications of friction.

References:

- R.C. Hibbeler, "Engineering Mechanics: Statics, 11th Edition", Pearson Prentice Hall, 2006.
- F. P. Beer, and E. R. Johston, Jr., D. F. Mazurek, P. J. Cornwell, E. R. Eisenberg, "Vector Mechanics for Engineering, Statics and Dynamics, 9th Edition", McGraw-Hill, New York, 2010.

BAS031				Phy	sics (1)				Prerequisites			
3 Cr	Lecture	Lecture 2 Tutorial 1 Lab. 1.5 Semester 1 st										
Material properties: Physical quantities - Standard units and dimensions - Mechanical												
properties for materials - Fluid properties - Periodic motion - Mechanical waves - Sound waves												
- Wayes in elastic media.												

Heat and thermodynamics: Temperature measurements and thermometers - Thermal expansion - Specific and latent heat - Heat transfer - Gas motion theory - First law of thermodynamics - Entropy and second law of thermodynamics.

References:

Physics for Scientists and Engineers, R.A. Serway and J.W. Jewett, 6th Edition, Thomson Brooks/Cole 2014.

Paul A. Tipler, " Physics for scientists and engineers" sixth edition, 2008.

BAS032				Phy	sics (2)				Prerequisites
3 Cr	Lecture	2	Tutorial	1	Lab.	1.5	Semester	2^{nd}	

<u>Electricity and Magnetism</u>: Electric charge - Electric force - Electric field- Column's law-Electric flux- Gauss law- Electric potential- Electric capacitance and Dielectrics - Ohm's law and simple circuits- Magnetic field - Baiot and Savart laws.

<u>Optics and Modern physics</u>: Nature of light and laws of geometric optics - Interference - Diffraction - polarization - optical fiber - laser - photoelectric effects - principle of quantum theory - special theory of relativity.

References:

Physics for Scientists and Engineers, R.A. Serway and J.W. Jewett, 9th Edition, Thomson Brooks/Cole 2014.,

Paul A. Tipler, " Physics for scientists and engineers" sixth edition, 2008.

BAS041		Р	rincipals of	f Eng	gineering	Chemi	istry		Prerequisites			
3 Cr	Lecture	Lecture 2 Tutorial 1 Lab. 1.5 Semester 1 st										
Equations of state-chemical thermodynamics - Material and energy balance in chemical												
processes- properties of solutions - Basic principles in electrochemistry and it's applications-												
selected topi	selected topics in chemical industry.											
References:												

Brown, L. T, LeMay H. E. Jr; Bursten, B. E.; Murphy, C.J., and Woodward, P.; "Chemistry The Central Science", Pearson International Edition (11th edn), Pearson Printice Hall, (2009).

PDE051		Prir	nciples of M	lanu	facturing	Engin	eering		Prerequisites		
3 Cr	Lecture	ecture 2 Tutorial Lab. 3 Semester 2 ^{ed}									
Introduction	to the follo	the following processes (Casting- Forging- Metal filing - Machining- Forming-									

Woodworking)

References:

 Hitomi, Katsundo. Manufacturing Systems Engineering: A Unified Approach to Manufacturing Technology, Production Management and Industrial Economics. Routledge, 2017.

PDE052			Engi	neeri	ing Draw	ing			Prerequisites	
3 Cr	Lecture	ecture 2 Tutorial 2 Lab Semester 1 st								
Two-dimens	ional drawi	onal drawings - Free-hand sketching - Sectional views - Auxiliary views and								

conventions - Computer-aided drawing (CAD) of 2D and 3D figures.

References:

Mcgraw-hill Mint, "Mechanical Drawing Board & CAD Techniques", Student Edition, 2011

ENG111		Technical Reports Writing										
2 Cr	Lecture	ecture 1 Tutorial 2 Lab Semester 3 rd UNR062										
Technical writing definition - audience analysis - technical writing styles - technical document												
characteristics - automated document organization - official and unofficial document types -												
structure of different types of technical documents												

References:

- G. J. Alred, W. E. Oliu, The Handbook of Technical Writing, 12th Edition, Bedford/St. Martin's; 2018
- K. Hyland, Teaching and researching writing. 3rd edition Routledge academic publisher, 2016
- M. Markel, Technical Communication, 11th edition, MacMillan, 2015.

BAS113			Μ	athe	matics (3))			Prerequisites		
3 Cr	Lecture	ecture 2 Tutorial 2 Lab Semester 3^{rd}									
Applications	of partial c	f partial differentiation - Maximum values of functions in more than one									
variable and applications - First order differential equations - Second order differential											
equations - Laplace transform and its applications - Analytical geometry in space.											

References:

- D. Backman, "Advanced Calculus Demystified", McGraw-Hill, 2007.
- S. A. Wirkus, and R. J. Swifi, "A Course of Ordinary Differential Equations", Taylor & Francis Group, LLC, 2015.

BAS114		Mathematics (4)										
3 Cr	Lecture	Lecture 2 Tutorial 2 Lab Semester 4 th										
Fourier series - Fourier transform - Complex numbers - Functions of a complex variable -												
Complex int	egration - R	lesid	ue theorem	- Dir	ection der	ivative	es - Double i	ntegral	ls - Triple			
integrals - Li	ine integrals	s - Si	urface integ	rals.								
References:												
	- L Drawn and D. Churchill "Complex Verichles and Applications". Oth Edition Machany Uill, 2012											

- J. Brown, and R. Churchill, "Complex Variables and Applications", 9th Edition, McGraw-Hill, 2013.
- . D. Backman, "Advanced Calculus Demystified", McGraw-Hill, 2007.

BAS 115			Statistics a	and F	Probabilty	y Theo	ry		Prerequisites			
2 Cr	Lecture	ecture 1 Tutorial 2 Lab Semester 4 th BAS012										
Measures of tendency and dispersion - Probability distributions - Sampling theorem - tests of												
hypothesis -	non-parame	etric	tests - regre	ession	and corre	elation	- time series	5.				

References:

Mary C. Meyer, Probability and Mathematical Statistics: Theory, Applications, and Practice in RSBN-10: 1611975778, SIAM (June 24, 2019)

ELE151			Electrical	Pow	er and M	Iachin	es		Prerequisites			
3 Cr	Lecture	2	Tutorial	2	Lab.		Semester	4 th				
Power: Elect	: Electrical power systems - three phase systems - Theory and models of transformers -											
Transmission	Transmission line models - Voltage and frequency control - effective and ineffective power -											
Optimal wor	Optimal work of power systems.											
Machines: T	Machines: The theory of operation - The construction of the Direct Current motors. The speed											
torque: and a	current char	acter	ristics - app	licatio	ons of the	DC m	otors. The t	heory of	of operation			
and construc	tion of step	per r	notors - Per	mane	ent-magne	et DC n	notor and Lo	w-iner	rtia DC			
Motors. The	Motors. The theory of operation construction of three phase induction motors.											
References:												
 Nilsson, J.V 	 Nilsson, J.W. and S.A. Riedel, Electric circuits. 2015: Pearson Upper Saddle River, NJ. 											
Slade P.G. Electrical contacts: principles and applications 2017: CRC press												

ctrical contacts: principles and applications. 2017:

BAS215			Μ	lathe	matics (5))			Prerequisites			
3 Cr	Lecture	2	Tutorial	2	Lab.		Semester	5 th	BAS113			
Numerical se	olution of l	ineai	and non-li	inear Dolu	systems (of equa	ations - Itera	tive m	ethods - Curve			
fitting: Least square of (Straight lines, Polynomials), Linearization of nonlinear relationship.												
Interpolation and polynomial approximation -finite difference operators - Numerical integration												
and differen	nd differentiation. Introduction to logic and proof -Mathematical induction-Counting											
technique-A	lgorithms-R	lelati	ons-Graphs	s and	trees							
References:												
 Mazumder Methods, s 	r, Numerical N science direct	Леtho ,2016	ds for Partial	Differe	ential Equat	tions, Fir	nite Difference	and Fini	te Volume			

Sheldon Rose, A First course in probability, Eighth edition, 2010, Pearson Prentice Hall.

ENG 412			Proj	ect M	Ianagem	ent			Prerequisites			
2 Cr	Lecture	1	Tutorial	2	Lab.		Semester	9 th				
Basics of pr	oject mana	ect management - basic administrative functions - planning, preparatory for										
different eng	gineering a	neering applications. Elements of human resources management: recruitment,										
mentoring, a	and control	. То	tal quality	mana	agement,	contin	uous improv	vemen	t Integration			
management	- Domain	Domain management - Time management - Cost management - Communication										
management	- Risk mar	nager	nent - Proce	ureme	ent manag	gement						

References:

- Kerzner, H. and H.R. Kerzner, Project management: a systems approach to planning, scheduling, and controlling. John Wiley & Sons, 2017.
- Kalpakjian, S., K. Vijai Sekar, and S.R. Schmid, Manufacturing Engineering and technology. Pearson, 2014.
- Nigel J. Smith, "Engineering Project Management", 3rd Edition, Wiley-Blackwell, 2008.

5.3. CCE Program Requirements

5.3.1. CCE Program Compulsory courses

CSE042			Introduct	ion t	o Compu	ter Sys	stems		Prerequisites
3 Cr	Lecture	2	Tutorial		Lab.	3	Semester	2^{ed}	
Introduction	to the desig	n an	d operation	of dig	gital comp	outers:	types of data	and it	s representation
and number	systems -	the	basic comp	poner	nts of the	comp	outer and the	e orga	nization of the
computer and	d the ways o	of tra	nsfer of info	ormat	ion- prog	rammii	ng with Visu	al Basi	c - Introduction
to information	on networks								
Introduction	to Progran	nmin	<u>g</u> : Program	Stru	cture and	Comr	nand Types	- Pres	entation of key
commands -	simple soft	ware	developme	ent					
Training Fu	ndamentals	: De	aling with	Com	imon Ope	erating	Systems (V	Window	ws – Linux) -
Software De	velopment	and I	Desktop So	ftwar	e				
References: - Peter V	/an Roy,	Seif	Haridi,	"Con	cepts, Te	echniqu	ies, and M	Iodels	of Computer

Programming" The MIT Press (February 20, 2012)

ECE 121				Eleo	ctrical Cir	cuits			Prerequisites	
3Cr	3 rd	^{3rd} Semester - Lab. 2 Tutorial 2 Lecture								

Elements of electrical circuits - Simple resistive circuits - Analysis of DC circuits - Theories of electrical circuits - First-order circuits - steady AC sinusoidal circuits - Power and power factor - Resonance circuits - Three-phase circuits.

References

William Hayt, Jack Kemmerly, Steven Durbin, Engineering Circuit Analysis, 8th ed. 2011

ECE122		Prerequisites									
3Cr	3 rd	Semester	-	Lab.	2	Tutorial	2	Lecture	BAS 032 BAS 031		
Introduction to quantum physics; Quantum mechanics; Atomic Physics; Molecules and solids; energy states and spectra of molecules, bonding in solids, introduction to crystalline properties of semiconductors, free electron theory of metals, band theory of solids, electrical conduction in metals, insulators and semiconductors, superconductivity. PN junction diode, Zener diode and tunnel diode											
References • Donald N	leamen, S	emiconducto	or phys	ics and De	evices, Mc	Graw-Hill 20	003				

ECE 141				Prerequisites								
3Cr	3 rd	3 rd Semester 1 Lab. 1 Tutorial 2 Lecture										
Numeric Syst Logic gates –	tems - Co simplific	s - Converting between binary, decimal, octal and hexadecimal numbers – Booleanalgebra - plification of logic functions – Karnaugh map (Sum of product) minimization – Karnaugh map										
(Product of su gates – Fund	(Product of sum) minimization - Combinational logic analysis - Combinational logic using NAND and NOR gates – Functions of combinational logic : (Adders, Comparators, Decoders/Encoders, Code converters,											
Multiplexers,	Parity g	arity generators) – Applications using FPGA – Experimental : Implementation of digital										
References			0.									

- Mano, M. Morris, and Charles R. Kime. Logic and computer design fundamentals. Pearson Higher Education, 2015.,
- Thomas L. Floyed, Digital fundamentals, Pearson international edition, 11th edition, 2019

CSE 112			AI	gorithms	s and Dat	ta Structur	e		Prerequisites
3Cr	4 th	Semester	1.5	Lab.	1	Tutorial	2	Lecture	CSE 042
Introduction to data structures - Different Data representations- Study the Introduction to data structures - Different Data representations- Study the structure, properties, and implementation issues of different data									
structures (Array – Stack – queue) -Data Structure Storing ، ordering and sorting algorithms Study Different									
search algorithms - Evaluation and analysis of studied algorithms using a recent programming language.									

References

- Allen Weiss Mark. Data structures and algorithm analysis in C++. Pearson Education India, 2007.
- Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles, Fifth Edition 5thEdition, 2017.

ECE 123				Eleo	ctronic Ba	asics			Prerequisites
3Cr	4 th	Semester	1.5	Lab.	1	Tutorial	2	Lecture	ECE122 ECE 121

Diode Circuit Analysis and Applications, Rectifier Circuits, Peak-Inverse-Voltage (PIV), Diode Power Dissipation, Clipping and Clamping Circuits, Power Generation from Solar Cells, Bipolar Transistors and Their Properties and Applications in DC Circuits - Field Impact Transistors (JFET / MOSFET) and their Properties and Applications in DC Cases.

References

- Thomas L. Floyd. ELECTRONIC. DEVICES. Prentice Hall, 9th ed., 2012.
- Ulrich Tietze, Christoph Schenk, Eberhard Gamm "Electronic Circuits: Handbook for Design and Application", Springer; 2nd edition (March 11, 2008).

ECE 131				Signals a	and Syste	ms			Prerequisites		
2Cr	4 th	4 th Semester 0 Lab. 0 Tutorial 2 Lecture									
Continuou	is time	time and discrete time signals and systems - basic system properties - Linear Time Invariant									

Systems – The C.T and D.T. convolution – Properties of LTI systems - Fourier Series Representation of C.T. and D.T. Periodic Signals - Parseval's relation - The C.T. Fourier Transform for periodic and aperiodic signals - Properties of continuous time F.T. - The D.T. Fourier Transform - Properties of D.T. Fourier Transform -Complex exponential and sinusoidal Amplitude Modulation-Demodulation for Sinusoidal AM - Frequency Division Multiplexing - Representation of continuous time signal by its samples - The sampling Theorem - The effect of under-sampling or aliasing - sampling with zero order hold - The Z Transform References

Lizhe Tan Jean Jiang, "Digital Signal Processing Fundamentals and Applications", cademic Press, 9thNovember 2018.

CSE 221		Control (1)										
3 Cr	6 th	Semester	0	Lab.	2	Tutorial	2	Lecture	BAS 113 ECE 121			
Introduction to control systems - Open and closed loop control systems - Laplace transformation and transfer												
function - Blo	ock diagra	am reduction	n – Sig	nal flow	graph - N	Iodeling of	system	ns: (Electrical circu	its, Mechanical			
systems, DC	motors,	AC servo n	notors,	Synchro	o, Potenti	ometers, st	epper	motors – Hydrauli	cservo motor –			
Thermal systems - liquid level systems) - Linearization of nonlinear mathematical model - Time response												
analysis: (First order systems – second order systems – steady state error) – Stability ofcontrol systems: (Routh stability analysis – Determining relative stability using Routh and root locusmethod) – Applications of the previous topics using MATLAB/Simulink toolboxes <u>References</u>												
-Ogata, Katsuhiko. Modern control engineering. Upper Saddle River, NJ: Prentice Hall, 2015 -Farid Golgaraghi, Benjamin Kuo, "Automatic Control Systems", McGraw-Hill Education, 10 edition, 2017												

CSE 212

Data Base Systems

Prerequisites

|--|

Basic database concepts - data structures and operations - data modeling -database system architecture - data definition and data manipulation languages - query languages including Algebra and SQL - software package training

References

Jukic, Nenad, Susan Vrbsky, and Svetlozar Nestorov. Database systems: Introduction to databases and data warehouses. Prospect Press, 2016

CSE 211				Digi	tal Desig	n (2)			Prerequisites
3Cr	5 th	Semester	0	Lab.	02	Tutorial	2	Lecture	CSE 141
Latches – SR Flip flops – D Flip flops – IK flip flops – T Flip flops – Edge triggered flip flops – Sequential									

Latches – SK Flip flops – D Flip flops – JK flip flops – I Flip flops – Edge triggered flip flops – Sequential circuit analysis – Analysis of clocked sequential circuits – state reduction – flip flop excitation tables – design procedure – registers – shift registers – ripple counters – synchronous counters – random access memory (RAM) – memory decoding – Algorithmic state machine (ASM): (timing consideration – control implementation – design with multiplexers) – Applications using FPGA - Practical experiments using TTL logic chips with the aid of 555 timer IC.

References

-Mano, M. Morris, and Charles R. Kime. Logic and computer design fundamentals. Pearson Higher Education, 2015. -Thomas L. Floyed, Digital fundamentals, Pearson international edition, 11th edition, 2019.

CSE 213		Computer Architecture									
3Cr	6 th	Semester	02	Lab.	0	Tutorial	2	Lecture	CSE 211		
Computer ari control unit - channels - n processors ar arrays - loose machines - studies B oferences	thmetic instructinemory a chitecture ely and ti intercon	- design of on repertoi architecture e - scalable ightly coup necting ne	ALU res (R s - co comp led pro tworks	- pipelin ISC, CIS onnection uter platf ocessors s - cluste	ed ALU C) - inte of com Forms - - symme ering - pa	and proces rrupt circui puter perip vector proc tric and CC rallel progra	sor – ts - bu bherals essors C-NUN ammin	multiprocessors - is synchronization - Distributed Sy - vectorizing com IA multiprocessor ig - performance ev	multicomputers - I/O devices - estems- parallel pilers - systolic s- data flow valuation - case		

- Andrew S. Tanenbaum, Structured Computer Organization (5th Edition) 5th Edition, Pearson; 5 ed. 2005
- M. Morris Mano, Computer System Architecture, Prentice Hall, 1992

CSE 311		Operating Systems									
3Cr	7 th	7 th Semester 2 Lab. 0 Tutorial 2 Lecture									
Types of ope memory - pr Multithreadir resilience - no <u>References</u>	rating sy ocessor n ng. Multij etwork ar	stems - fund nanagement processor synd distribute	ctions - pro ystems d oper	of operat cess sche - device ating sys	ing syste eduling - e manage tems - pr	ms - proces - case study ment - deac ogramming	ss state (Uniz dlock j projec	es - memory manag x)- Real Time Ope prevention - file sy ct.	gement - virtual grating systems- stems - system		

Silberschatz, Abraham, Greg Gagne, and Peter B. Galvin. Operating system concepts. Wiley, 2018.

CSE 312		Computer Networks (1)										
3Cr	7 th	Semester	2	Lab.	0	Tutorial	2	Lecture	CSE 042			
Seven layer communication model - network architecture and protocols routing techniques and algorithms - network planning and design - Network layers, TCP / IP Network protocol, Routing protocols, Network Design, Network Management, Congestion, Examples of LAN's and WAN's, High Speed Networks, Other Network Protocols.												
References Mosharra	f. Firouz. (Computer Ne	tworks.	: A Top-do	wn Appro	ach. McGrav	v-Hill. 2	2016.				

CSE 313				Mic	roproces	sors			Prerequisites
3Cr	7 th	Semester	0	Lab.	2	Tutorial	2	Lecture	CSE 213

Computer architecture - CPU architecture - fetch-decode-execute cycle - addressing modes - instruction set - memories (RAM-ROM-Cache-Flash) - memory interfacing - timing diagrams - assembly language - instruction formats - data representation - arithmetic operations, Program controlled and interrupt driven I/O - I/O interfacing - connection of terminals, discs and I/O ports - assembly language - macros and kernels - introduction to embedded systems

References

Ahmet Bindal, "Fundamentals of Computer Architecture and Design", Springer; 2nd ed. 2019 edition (January 31, 2019).

ECE 231		Digital Signal Processing									
3Cr	5 th	Semester 0 Lab. 2 Tutorial 2 Lecture ECE 131 time Summary Characteristics Short time Descensing Disk & Example 5 Example 5									
General Intro Quantization Recognition - <u>References</u>	duction - - Linear - Speaker	Speech Ch Predictive Recognitio	aracter Coding n - Ima	ristics - S g - spee age Codin	hort time ech Cod ng - Vide	Processing ing Tech o Coding -	g - Pitc niques Reviev	h & Formants Esti - Speech Synth wProjects.	mation - Vector nesis - Speech		

Lizhe Tan Jean Jiang, "Digital Signal Processing Fundamentals and Applications", cademic Press, 9th November 2018.

ECE 232			An	alog Con	nmunicat	ion System	S		Prerequisites
3Cr	6 th	Semester	0	Lah	2	Tutorial	2	Lecture	ECE 131
501	0	Semester	0	Lab.	2	Tutoriai	2	Lecture	BAS 114
All Types of	AM (DS	B-LC, DSB	8-SC, 8	SSB, VSI	B, QAM)	$-\operatorname{AM}\operatorname{mod}$	ulators	s, and demodulate	ors, advantages
and disadvantages-Synchronization circuits - AM applications: Telephone channel multiplexing and super									
heterodyne receiver - Angle Modulation - Narrow band angle modulated signals - Spectrum of sinusoidal signal									
(N.B and W.B) - Generation of wide band FM (Indirect and Direct methods)-Demodulation (slope detector,									
PLL) - De	PLL) - De-emphasis and pre-emphasis filtering -compatible stereo - Intersystem comparison -								

Sampling process – PAM – Quantization (uniform and non-uniform) – PCM – Time division multiplexing – Delta, and adaptive delta modulation – Differential PCM – random process – Stationary and ergodic processes – Mean, correlation, and covariance functions – Power spectral density – Narrow band noise.

References

• K.C. Raveendranathan, "Analog Communications Systems: Principles and Practices", Orient Blackswan (September 23, 2008).

ECE221				Elec	tronic cir	cuits			Prerequisites
3Cr	6 th	6 th Semester 1.5 Lab. 1 Tutorial 2 Lecture							
AMPLIFICA	TION, C	Circuit MO	DELS	FOR A	MPLIFIE	ERS-Impeda	ance l	evel transformation	n; VOLTAGE,

current, Power gain; Frequency Response of Amplifiers, SINGLE-TRANSISTOR AMPLIFIERS; SMALL-SIGNAL MODELING AND LINEAR AMPLIFICATION; The BJT Amplifier. The MOSFET Amplifier Coupling and Bypass Capacitors Circuit Analysis Using dc and ac Equivalent circuits, Multistage amplifiers and composite circuits - Current mirrors – High frequency analysis and frequency response – Differential amplifiers - Feedback amplifiers - Digital logic gates – Sequential circuits (flip-flops, shift registers, counters) – Power amplifiers, Active filters based Operational amplifiers.

References

- Thomas L. Floyd. ELECTRONIC. DEVICES. Prentice Hall, 9th ed., 2012.
- Ulrich Tietze, Christoph Schenk, Eberhard Gamm "Electronic Circuits: Handbook for Design and Application", Springer; 2nd edition (March 11, 2008).

3Cr 7 th Semester 0 Lab. 2 Tutorial 2 Lecture ECE 232	ECE 331		Digital Communication Systems									
	3Cr	7 th	7thSemester0Lab.2Tutorial2Lecture									

Baseband Pulse transmission: Matched filters, Intersymbol Interference, Nyquist Criterion for distorionless baseband binary transmission - Signal- Space Analysis: Geometric representation of signals, likelihood functions, coherent detection of signals in noise: ML and MAP decoding rules, the correlation receiver. Probability of error calculation – Pass-band Digital Transmission: Description of ASK, FSK, PSK, DPSK, QAM, MSK modulation schemes - their implementation PSD c/cs - B.W efficiency (spectral efficiency) - performance in AWGN channels.

References

DR. J. S. CHITODE, "DIGITAL COMMUNICATION", Technical Publications; 1st edition, 2011

ECE 341		Prerequisites							
3Cr	7 th	Semester	0	Lab.	2	Tutorial	2	Lecture	ECE 121 BAS 113
Vector analys varying and t introduction to <u>References</u>	is, static time harr o electror	electric fie monic Max magnetic way	eld, well' ve pro	steady c s equatic opagatior	currents, ons, wave	electromag e equation	and it	fields. static magne s solutions, bound	etic fields, time ary conditions,

Salam, Md. Abdus, "Electromagnetic Field Theories for Engineering", Springer Singapore, 2014.

Sadiku, Matthew N. O. Elements of Electromagnetics. New York: Oxford University Press, 2001.

ECE 342		Waveguides and Antennas								
3Cr	8 th	8 th Semester 1.5 Lab. 1 Tutorial 2 Lecture								
Time varying potentials, pl circuit, trans fundamentals microstrip an polarization propagation, References	g fields a ane wave mission , basic a tennas, a mismatch surface w	and Maxwe e propagatic line circuit antenna par antenna arra n, antennade vave propag	ll's eq on in f theory amete ays, ar esign t ation,	uations, ree spac , Smith c rs, radiat ray poly echnique iono spho	boundary e, TEM t chart, loss tion from nomial, p es, introduceric propa	condition ransmission ty transmiss wire anten whased array uction toter agation, mic	s at d n line ion lir nas, a ys and restria rowav	ifferent media inte s, transmission l nes, matching techr perture antennas, nullsteering, rece l and extra terrest e and millimeter w	erface, retarded ine equivalent iques. Antenna radiation from iving antennas, rial radio wave ave	

- Bansal, Rajeev. Fundamentals of engineering electromagnetics. CRC press, 2018.
- Carlo G. Someda, "Electromagnetic Waves ", CRC Press; 2 edition (January 13, 2006).
- U. A. BAKSHI, "ANTENNA & WAVE PROPAGATION", Technical Publications; 1st edition, 2011.

CSE 315		Embedded Systems								
3Cr	8 th	8 th Semester 1.5 Lab. 1 Tutorial 2 Lecture								
Embedded system design process - embedded computing platform- program design and analysis								lysis- Hardware		

Embedded system design process - embedded computing platform- program design and analysis- Hardware accelerators - distributed embedded architectures- system analysis and architecture design- Design example – Programming project.

References

Ibrahim, Dogan. Advanced PIC microcontroller projects in C: from USB to RTOS with the PIC 18F Series. Newnes, 2016.

CSE 314		Computer Drawings								
3Cr	8 th	8 th Semester 2 Lab. 0 Tutorial 2 Lecture								
Fundamental graphics - po removal - sca References	s of comp lygon rep n line and	outer graphi presentation d ray tracing	cs - di - poly g - illu	splay dev gon fillin mination	vices - fu ig - polyg and shad	ndamentals gon clipping ling models	of gra g - thre - prog	phic algorithms - t e dimensional grap gramming projects	wo dimensional hics - back face	

 Computer Graphics: Principles and Practice in C, by J. D. Foley, A. Van Dam, S. K. Feiner, J. F. Hughes. Addison-Wesley, 2nd ed..

CSE 411		Advanced Programming Techniques								
3Cr	9 th	Semester	2	Lab.	0	Tutorial	2	Lecture	CSE 042	
Programming Internet pro introto embed	g Technic ogrammin dded prog	ques in Net ng-Web b gramming–I	work a ased a Langua	and vario pplicatio ges for I	ous Medi ons – wor nternetwo	a Types – 1 rkflow auto orking prog	New I matioi rammi	Programming Tean — multithreaded ng and Data Trans	chniques (e.g. programming – fer	

References

Rick Bitter, Advanced Programming Techniques, 2nd ed., CRC Press 2017

CSE422		Artificial Intelligence									
3Cr	10 th	10 th Semester 1.5 Lab. 1 Tutorial 2 Lecture									
Introduction representation inheritance - - Introduction languages- le Russell, Stuar	to artifi n - logic- nonmon n to expen arning-pl rt J., and	cial intelli - productior notonic rea rt systems a anning-robo Peter Norvi	gence syste soning nd kno otics- o g. Arti	concepts ms - sen - uncert owledge e lecision s ficial inte	s and denantic ne ainty - fu engineerin support sy elligence:	efinitions - tworks - fra uzziness- ga ng applica ystems- inte a modern a	state-s ames - ame pla tion fi elligent approa	pace and search knowledge issues aying - AI-program elds that need intel agents – Semantic ch.	- knowledge - inference - ming languages ligence (natural web		
References											

- Malaysia; Pearson Education Limited, 2016.
- Devangini Patel, Hands on Artificial Intelligence for search, 2018

CSE 421		Prerequisites							
3Cr	10 th Semester 1.5 Lab. 1 Tutorial 2 Lecture								CSE 221
Modular stru Automation - Timers -Cour Logic - Micro of Control Al References	icture of - PLC Pi nters – P processo gorithms	Programm rogramming LC Prograr or control sy -Three-terr	nable g – La n Dev stems n cont	Logic C dder Log elopment – Interfa rol using	Controller gic – Har for Con cing cont micro pr	s (PLCs) adling of In trol Applica trollers with ocessors – C	– Adva puts a ations n sense Contro	antages of using PL nd Outputs in PLO – Interlocking Log ors and actuators ller Fault Tolerance	Cs in Industrial Cs – Markers – cic – Sequential – Programming e.

Bolton, William. Programmable logic controllers. Newnes, 2015

ECE 431		Mobile Communications									
3Cr	9 th	9 th Semester 0 Lab. 2 Tutorial 2 Lecture									
Conventional telephone systems – Traffic theory – Conventional mobile system – Frequency spectral efficiency – Methods of increasing system capacity – System architecture – Multiple access schemes – Interference in cellular systems – Hand off – Fading and Doppler in cellular system – GSM system architecture – GSM channel coding- Ciphering and modulation – System management.											
 <u>References</u> Alexander 1st Edition 	Kukushki 1. Wilev: 2	n, "Introduct 2018.	ion to I	Mobile Ne	twork Eng	ineering: GS	M, 3G-	WCDMA, LTE and the	e Road to 5G″,		

Elective Courses Level 300

CCE 311	Integrated Circuits	Prerequisites
---------	---------------------	---------------

3Cr	8 th	Semester	0	Lab.	2	Tutorial	2	Lecture	ECE 221	
IC technology - Tuned amplifiers - Noise analysis - Operational amplifiers and applications - Waveform										
generation –	generation – Analog IC applications (analysis and design) – Evaluation of circuit performance by computer-									
aided circuit simulations - Phase locked loops - Electronic circuits in radio and television -Video recording										
References										

D. Widmann, H. Mader, H. Friedrich, "Technology of Integrated Circuits", Springer-Verlag Berlin Heidelberg, 1 edition, 2000.

CCE 331		Optical Fiber									
3Cr	8 th	8 th Semester 0 Lab. 2 Tutorial 2 Lecture									
Optical versus radio frequency communications – Optical fibers – Ray representation in optical fibers – Model analysis in step and graded index optical fibers – Signal degradation – Optical receivers – Optical properties of III – V semiconductors – Emitters: SC laser diodes, light emitting diodes –Photo detectors PIN and avalanche											
photo diode (<u>References</u>	(APD).										

- Rongqing Hui, "Introduction to Fiber-Optic Communications 1st Edition", Academic Press Elsevier, 2019.
 John P. Dakin, Robert Brown, "Handbook of Optoelectronics: Concepts, Devices, and Techniques", CRC Press, 2019.
- John P. Dakin, Robert Brown, "Handbook of Optoelectronics: Concepts, Devices, and Techniques", CRC Press Published October 11, 2017.

CCE 332		Microwave Engineering									
3Cr	8 th	8 th Semester 0 Lab. 2 Tutorial 2 Lecture									
Rectangular dielectric opti inferrite medi <u>References</u>	and circu ical wave ia, passiv	ılar wave g guides, anal e microwav	guides lysis of e com	, cavity f microstr ponents.	resonator rip and s	rs, excitatio trip lines, s	on of scatteri	waveguides, surfa ing parameters, wa	ce guiding and ave propagation		

- Nguyen, Cam. Radio-frequency integrated-circuit engineering. John Wiley & Sons, 2015.
- Thomas H. Lee, "The Design of CMOS Radio-Frequency Integrated Circuits", 2nd Edition, 2003.
- Christopher Bowick, "RF Circuit Design", 2nd Edition, Newnes, Elsevier, 19th October 2007.

CCE 341		Distributed Systems									
3Cr	8 th	Semester	0	Lab.	2	Tutorial	2	Lecture	CSE 042		
The course de as communic studies. It cou distributed sy computing, w management	eals with ation, nar vers archi ystems, a virtualiza of distrib	the distribu ming, synch itectures in o and new top tion, cloud outed system	ted sys froniza distribu pics su comp is. The	stems tecl tion, repl uted syste of as pe- puting an course il	nnology. ication, f ems, refle er-to-pee d its roo lustrates	It explains to ault toleran ecting the present computing the present computing the present computing the present computer of the present computer of the present the present computer of the present c	the prin ce, and cogress ng, ser ibuted cepts fo	nciples of distribute d security using exa- that has been mad sor networks, well systems mechan- or each topic with c	ed systems such amples and case e on organizing o services, grid asms, and self- oncept-oriented		
assignments and implement	and a smantant	nd a small high-level programming assignment. Students complete a term project on the design tation of a realdistributed system.									

References

 Van Steen, Maarten, and Andrew S. Tanenbaum. "A brief introduction to distributed systems." Computing 98.10 (2016): 967-1009

CCE 342		Multimedia										
3Cr	8 th	8 th Semester 0 Lab. 2 Tutorial 2 Lecture										
Multimedia - design and implementation of GUI- hardware interfacing- programming project. References												
 Iain E G Ri Multimed 	 Iain E G Richardson, H.264 and MPEG–4 Video Compression: Video Coding for Next–generation Multimedia Hardcover – Import, 17 Oct 2003 											

CCE 343			Со	mputer S	Syster	n Programm	ning		Prerequisites			
3Cr	8 th	^{8th} Semester 0 Lab. 2 Tutorial 2 Lecture CSE 042										
Functions of assemblers, in References	system nterpreter	software corrs and utiliti	ompon es - ca	ents - d ase study	esign of rea	of hardwar al system pro	e drivers ogrammin	, loaders and link	kers, compilers,			
 Randal E. Bryant and David R. O'Hallaron, Computer Systems: A Programmer's Perspective, 3/E (CS:APP3e) 												

CCE 344		Software Engineering											
3Cr	8 th	Semester	0	Lab.	2	Tutorial	2	Lecture	CSE 042				
Software Dev	velopmen	ppment processes: Waterfall models, Agile methods, Rapid application development - System											
modeling usi	modeling using UML: Context models, Interaction models, Structural models, Behavioral models, Model-												
driven engin Architectural Release testir Making chan software chan Software proj <u>References</u>	eering - patterns ng, User t nges to o nge - Qu ject mana	System arc , Application esting – Sofo perational st ality Assura agement.	chitection arcl ftware softwa ance&	ing and hitectures Maintens re syster Configu	design: A s – Testi ance: Evo ns, Lega ration M	Architectura ng: Develo olution proce cy system anagement,	l desi pment esses, manag recent	gn decisions, Arc testing, Test-driv Understanding soft gement, Making t trendsin software	hitecturalviews, endevelopment, ware evolution, decisions about e development -				

Sommerville, software engineering, 10 ed., Pearson India 2018

CCE 345				Prerequisites								
3Cr	8 th	Semester	0	Lab.	2	Tutorial	2	Lecture	CSE 221			
Introduction	action to discrete time control systems –Impulse sampling and holding –pulse transfer function –Mapping											
between S-pl	between S-plane and Z plane -closed loop transfer function using SFG -Stability analysis of closed loop											
systems in Z	plane –T	ransient and	l stead	y state re	esponse a	nalysis –des	sign ba	ased on root locus	method –design			
based on freq	uency res	sponse analy	vsis -st	ate space	represen	tation of dis	crete t	ime systems –solvi	ng discrete time			
state space e	quations	-pulse trar	nsfer f	unction 1	matrix –	liscretizatio	n of c	continuous time st	ate equations –			
Lyapunov stability analysis												
Doforoncos												

References

• Ogata, Katsuhiko. Modern control engineering. Upper Saddle River, NJ: Prentice Hall, 2015..

Elective Courses Level 400

СС	E 411				Prerequisites									
	3Cr	10 th - 9 th	Semester	Lecture	CCE 311									
Data	acquisit	ion syste	systems – Sensors – Signal Conditioning – Digitizing – Microprocessor based systems –											
Mem	nory inter	face – I/	e - I/O interfaces – Applications in industry.											
<u>Refe</u>	erences	ences												
• E	Boadan M	. Wilamov	vski, J. Davia	Irwin,	Fundame	ntals of In	dustrial Elect	ronics,	CRC Press2017.					
• S	Shih-Chii L	iu, Jorg Kr	amer, Giaco	, mo Ind	iveri, "And	alog VLSI:	Circuits and I	, Principl	les", A Bradford Bool	k (November 15,				
2	2002).									-				
• (e	G S Sawhn edition (Ne	ney, "Biom ovember 2	y, "Biomedical Electronics and Instrumentation", I.K.International Publishing House; 1st Edition 2011 Tember 29, 2011).											

CCE 412			Int	roductio	n to Nan	otechnolog	у		Prerequisites			
3Cr	10 th - 9 th	Semester	0	Lab.	2	Tutorial	2	Lecture	ECE 341			
Introduction	to nano te	nano technology science - Wave Nature of Light - Dielectric Waveguides and Optical Fibers -										
Polarization a	ation and Modulation of Light – nsno plasmonic wavrguide – plasmonic sensors – medical applications											
of nano techr	nano technology											
References	erences											
 Sergey V. 	y V. Gaponenko, "Introduction to Nanophotonics" 1st Edition, Cambridge University Press; 2010.											

CCE 421				Infor	mation T	heory			Prerequisites			
3Cr	10 th - 9 th	Semester	Lecture	ECE 232								
Introduction	Introduction to information theory (Information, Entropy, Discrete memory- less channels - Mutual											
information -	- Channel	Channel capacity). Compression and source coding (Properties of source codes, construction of										
instantaneous	s codes, 1	odes, lossy data compression). Channel coding (linear block codes, syndrome calculation,										

Cyclic codes, Convolutional coding, The code tree, trellis and state diagram, ML decoding of convolutional codes, the Viterbi algorithmShannon theorem of perfect secrecy. **References**

• Yeung, Raymond W, "Information Theory and Network Coding", Springer US, 2008.

CCE 422		Sele	cted T	opics in (Communi	ications En	gineeri	ing	Prerequisites		
3Cr	10 th - 9 th	Semester	0	Lab.	2	Tutorial	2	Lecture	ECE 331		
	. 1										

This course covers the most recently introduced topics in communication systems and applications.

CCE 423				Prerequisites					
3Cr	10 th - 9 th	Semester	0	Lab.	2	Tutorial	2	Lecture	ECE 331
The Geo-stat noise – Uplin assigned FDM circuits – An LEO satellite for LEO sate channel – Pac <u>References</u>	ionary (C k and do MA – TD tenna gai s – CDM ellites – N ellites – N	GEO) orbit - wnlink carr DMA – Fran n function - A in LEO s Modified po ission contro	- The ier-to- ne effi - Pass- atellite ower c ol sche	space lin noise ra ciency ar - band in e systems ontrol – eme – Po	k – Trar tios – In nd channe nterferenc – Signal Fransmit wer contr	ismission lo iter-modula el capacity - ce – Protec to interfere permission ol – Multi-l	basses – tion n – CDN ction = nce rat contro beam I	- The link power b oise – Pre-assigne /A –Interference b ratio – Coordinat tio (SIR) – Spread ol scheme; non-fac LEO satellites	udget – System ed and demand etween satellite ion criterion – slotted ALOHA ding and fading

Louis J. Ippolito Jr., "Satellite Communications Systems Engineering: Atmospheric Effects, Satellite.

CCE424		Communication Security									
3Cr	10 th - 9 th	Semester	0	Lab.	2	Tutorial	2	Lecture	ECE 331		

Students have gained fundamental knowledge of security terms and concepts, such as threats, vulnerabilities, protection and incident handling. The purpose of the course is to provide the student with an overview of the field of communication / information security and respective implementation issues for communication systems. The students will be exposed to the spectrum of security activities, its methods, methodologies and mechanisms. Coverage will include cryptographic functions, inspection and protection of assets, detection of and reaction to threats to communication systems, and analysis of incident procedures. Another focus will be set on security related organizational structures and product / system certification with respect to standardized security evaluation crietria.

References

 Peter Stavroulakis, Mark Stamp., Handbook of Information and Communication Security. Springer Science & Business Media, Feb 23, 2010.

CCE 425				Ada	pative Fi	lters			Prerequisites
3Cr	10 th - 9 th	Semester	0	Lab.	2	Tutorial	2	Lecture	ECE 231

A course that examin es the fundamentals of optimal filtering and estimation, Wiener filters, linear prediction, steepest-descent and stochas ticgradient algorithms; frequency-domain adaptive filters; method of least squares, recursive least squares, fast fixed order and order-recursive (lattice) filters; misadjustment, convergen ceand tracking analyses, stability issues, finite precision effects; connections with Kalman filtering; and nonlinear adaptive filters.

References

- Haykin, Simon, Adaptive Filter Theory, Prentice-Hall, Inc., 4 ed. 2001
- Hayes, Monson H., Statistical Digital Signal Processing and Modeling, John Wiley & Sons, 1996.

CCE426					Phonics				Prerequisites
3Cr	10 th - 9 th	Semester	0	Lab.	2	Tutorial	2	Lecture	CCE 332

Plane and spherical waves – Simple and compound sound sources – Dynamically analogous mechanical and acoustical circuits – Acoustic transducers – Loudspeakers; types and systems – Microphone; types and systems - Measurements of sound – Acoustics and hearing – Acoustic environment outdoors – Acoustic environment indoors - Ultrasonic applications.

References

Frank J. Fahy. Foundations of Engineering Acoustics, Academic Press; 1 ed, 2000

CCE 427		Prerequisites							
3Cr	10 th - 9 th	Semester	0	Lab.	2	Tutorial	2	Lecture	ECE 331

DFT and its properties – Fading (fast, slow, and flat) – Frequency selective and non-selective – Dual Multi-Tone (DMT) – OFDM – Multi-path propagation – Delay spread values – Guard time and cyclic extension – OFDM parameters – OFDM versus single carrier modulation - Spread Spectrum – PN sequence generators – Direct sequence Spread Spectrum – Probability of error – Frequency Hopping Spread Spectrum – CDMA– DS-CDMA.

Reference

Andrea Goldsmith, "Wireless Communications", Cambridge University Press; 1 edition (August 8, 2005).

CCE 441		Computer Networks (2)										
3Cr	10 th - 9 th	10 th - 9 thSemester0Lab.2Tutorial2Lecture										
Theoretical for topics in con Quality of Se network mea and QoS mec	oundation nputer no rvice fund surement chanisms	ns for build et-works in damentals, j s. Methodo in the Inter	ing nez icludin packet logies net. Ex	xt genera g advand scheduli and tools pertise ir	tion Inter ced trans ng, multi s in under n network	rnet. To pro sport layer media netwo rtaking rese	vide a concej orking arch ir ing and	detailed introduct pts, adaptive queu , content distribution n networking - Per d computer networ	on to advanced e management, on networks and formance issues k simulation.			

References

- . Comer, Douglas E. The Internet book: everything you need to know about computer networking and how the Internet works. Chapman and Hall/CRC, 2018.
- Cisco Networking Academy. Routing and Switching Essentials Companion Guide. Pearson Education, 2014.
- Roger L. Freeman, "Telecommunication System Engineering", Fourth Edition, Wiley; May 2004.

CCE 442		Design and Programming of Web server									
3Cr	10 th - 9 th	Semester	0	Lab.	2	Tutorial	2	Lecture	CSE 042		
This course concentrates on major technologies used in building Web servers. Alternate versions are to be											

given each year: the Windows-based IIS Server and the Linux-based Apache server. For IIS, ASP. NET along with C# are used for programming Web servers. For Apache, PHP is the language of choice. The course starts with a fast track on client programming, the HTTP protocol, SQL database servers, and XML programming. A weekly lab, two application projects, and a research project constitute the major requirements of the course. <u>Reference</u>

[•] Thomas A. Powell, Web Design: The Complete Reference Paperback – May 12, 2000

CCE 443		Big Data Analytics									
3Cr	10 th - 9 th	Semester	0	Lab.	2	Tutorial	2	Lecture	CSE 212		
Introduction andDescriptiv privacy, Mini <u>Reference</u>	to ve Analy project	Data Min tics, Surviva Application u	ing, l Ana sing	Data, alysis, Sc Hadoop a	Collectorial Network	ction, Sa works Anal Reduce too	mplin ysis, N ls.	g andPreprocess Modelling and Ber	sing, Predictive achmarking and		
Peter Ghavami, Big Data Analytics Methods: Analytics Techniques in Data Mining, Deep Learning and Natural											

Language Processing 2nd ed., de Gruyter; 2019	
---	--

CCE 444		S	electe	d Topics	in Comp	uter Engine	ering		Prerequisites
3Cr	10 th - 9 th	Semester	0	Lab.	2	Tutorial	2	Lecture	CSE 213
Selected topics related to the state of the art in computer engineering.									

CCE445		Game Theory and Decision making										
3Cr	10 th - 9 th	CSE 411										
Game theory elements of d introduction to of the math cooperative, to will be assign Reference	provides lecision n to fundan ematical network, ne dreal-w	s asset oftoo naking that i nent also fg backgroun potential an vorld examp	ols, ap is best ame th d. To d cong oles of	proaches described eory and pics cov estion ga game the	, and per d by strat decision ered inc ames as w eory and	rspective so egy,coercio making wi lude: static vell as barga strategic dec	n deci n and th a sp c, evo ining a cision	sion making to mi cooperation. This c becial emphasis on lutionary,supermod and uncertainty in g making to investig	mic the human course offers an the foundations dular, repeated, games. Students ate as projects.			

R. Duncan Luce, Howard Raiffa, Games and Decisions: Introduction and Critical Survey, Dover Publications; 1989.

CSE 446				Interr	net Engin	eering			Prerequisites
3Cr	10 th - 9 th	10 th - gthSemester0Lab.2Tutorial2Lecture							

A course that examines major protocols used in internet engineering: IP, ICMP, TCP, UDP; new technologies introduced on the internet, such as IP Multicast, Mobile IP, IPv6, VPNs, and quality of service; routing on the Internet; network security and firewall design; and an overview of the application protocols such as SMTP, HTTP, RTP, and SNMP.

Reference

- Computer Networking: A Top-Down Approach, Featuring the Internet, James Kurose and Keith Ross, Addison-Wesley Pub Co, 2004.
- Internet & World Wide Web How to Program, 4th edition, Harvey M. Deitel and Paul J. Deitel, , Prentice Hall , 2008.

CCE 447		Prerequisites									
3Cr	10 th - 9 th	10 th - gthSemester0Lab.2Tutorial2Lecture									
Introduction of languages syntax and so consideration <u>Reference</u>	to the theo - context emantic a	ory of langu dependent analysis - co	ages - and c ode ge	evolutio ontext fineration	n of co ree la and c	omputer lang nguages - 1 optimization	guages an logical si - storage	d translators - forn tructure of a com e and register alloc	hal specification ppiler - lexical, cation - runtime		

Douglas Thain, Introduction to Compilers and Language Design1st ed. Paperback 2019.

CCE461		Digital Image Processing										
3Cr	10 th - 9 th	10 th - 9 thSemester0Lab.2Tutorial2Lecture										
Image repres projection - f <u>References</u>	entation - eatures ex	- methods o xtraction - in	f imag mage a	e process analysis -	sing - enl pattern r	hancement - recognition -	- data (- comp	compression - reco puter vision	nstruction from			
Understanding digital image processing Vinin Tyggi CPC press 2018												

Understanding digital image processing, vipin Tyagi, CRC press, 2018.

CCE462		Biomedical Engineering									
3Cr	10 th - gthSemester0Lab.2Tutorial2Lecture										
This cours ofinstrumenta signals; type system, meas electrical safe <u>References</u>	e includ ation syst s and ch surement ety of mee	les an in ems; types aracteristics s, and diag dical equipr	ntrodu and ch s of e gnostic nent	ction to naracteris lectrodes equipm	gener tics of ; temp ent; bl	ral instr transducer erature reg ood instru	umentation s; source: gulation a ments; p	on configuration, s and characteristic and measurement; patient care and n	performance es of bioelectric cardiovascular nonitoring; and		

G S Sawhney, "Biomedical Electronics and Instrumentation", I.K.International Publishing House; 1st Edition 2011 edition (2011)

• W. Mark Saltzman, Biomedical Engineering, Cambridge University Press; 2 ed 2015

CCE463		Prerequisites							
3Cr	10 th - 9 th	Semester	0	Lab.	2	Tutorial	2	Lecture	

This course presents current research efforts in the emerging interdisciplinary field of communications engineering for genetics and bioinformatics. It shows how concepts and techniques from the field of communications engineering can be applied to central problems from the fields of genetics and bioinformatics. As a basic analogy, voice information is digitized, transmitted, and processed in communications, and DNA information is replicated, transmitted, and processed in genetics. The main topics covered include DNA compression, mutual information for functional genomics, channel coding for gene expression, genomic signal processing, and biological computation

References

- Rastogi, Bioinformatics: Methods and Applications: Genomics, Proteomics and Drug Discovery" paperback 2013
- Ruchi Singh and Richa Sharm, Bioinformatics: Basics, Algorithms and Applications Paperback December 1, 2010

CCE 464		Prerequisites								
3Cr	10 th - 9 thSemester0Lab.2Tutorial2Lecture							ECE 231		
Introduction t feedback arc hardwareimpl Deep Reinfor Sequence Mo References	Introduction to basic concepts for NN-single and multilayer perceptrons- learning algorithms- feedforward and feedback architectures - recurrent networks- associative memory networks- design and hardwareimplementation of NN- typical examples.Introduction to Deep Learning - Deep Computer Vision - Deep Reinforcement Learning - Data Visualization for Machine Learning - Learning and Perception - Deep Sequence Modeling - Deep Generative Models									

• Metin Akay, Handbook of Neural Engineering, 2006

CCE 271		Prerequisites							
1 Cr	6 th	Semester	3	Lab.	0	Tutorial	0	Lecture	107 Cr
Training on i period about venue and fo formal report to be evaluat industry or of	ndustrial three w rmally re on the stu ed by a j ther colle	establishme reeks. The p port on per udent's perfo panel of thr ges of eng	ents re prograt format prmane ee me ineerir	levant to m trainin nce of tra ce during mbers wang. The	the progr g advisor uinee(s). training. ith one n course is	am. Trainin schedules a A Mentor in The student nember beir graded as	ig lasts at least n the i t subm ng an o Pass/	for total of 90 l cone follow up visi ndustrial establishi its a formal report a external examiner Fail grade- system	hours, during a it to the training nent provides a and presentation appointed from n.

CCE 371		Prerequisites							
1 Cr	8 th	Semester	3	Lab.	0	Tutorial	0	Lecture	CCE 271
Training on minimum pe training venu provides a fo presentation appointed fro	industrial riod of s ue and fo rmal repo to be ev om indust	l establishmen ix weeks. The ormally report ort on the stude aluated by a ry or other coll	ts re pro on ent's pane lege	elevant to ogram tra performa perform el of thro s of eng	the prog nining ad nce of the ance duri ee memb ineering.	gram. Trainin visor schedul rainee(s). A ng training. T ers with one The course	g lasts for les at lea Mentor in The stude member is grade	or total of 180 st two follow- n the industria ent submits a for r being an ext d as Pass/Fail	hours, during a up visits to the l establishment ormal report and ternal examiner grade- system.

CCE 481		Prerequisites							
2 Cr	9 th	Semester	3	Lab.	0	Tutorial	1	Lecture	125cr
A supervised of computer, objectives, co expected to c completion o from the stud	l project i commun omplete a lo some p f the pro- lents.	n groups of ications and a literature s oreliminary ject in the s	normall l electric survey, s modelin pring ter	y 3 stude: al engine et projec g and an m. A pro	nts ai ering t spe alysis	med at pro g. Students cifications s and to acc ional report	viding pr are expe and seled quire the and an o	actical experience octed to define the ct a design method necessary material oral presentation a	in some aspects project, state its I. They are also I needed for the re also required

CCE 482		Prerequisites							
3 Cr	10 th	CCE 481							
This is a con analysis, test includes a de critical appra	tinuation ing and e escription isal of the	of CCE 401 evaluation so of the des e project. An	l. Stud tages. ign pr n oral	ents are a The cour ocess, in presentat	asked to rse also plemention and	o deliver a requires t ntation and a poster a	product the produ l testing, re also w	hat has passed thro ction of a professi verification and v ithin the project de	bugh the design, onal report that calidation and a liverables