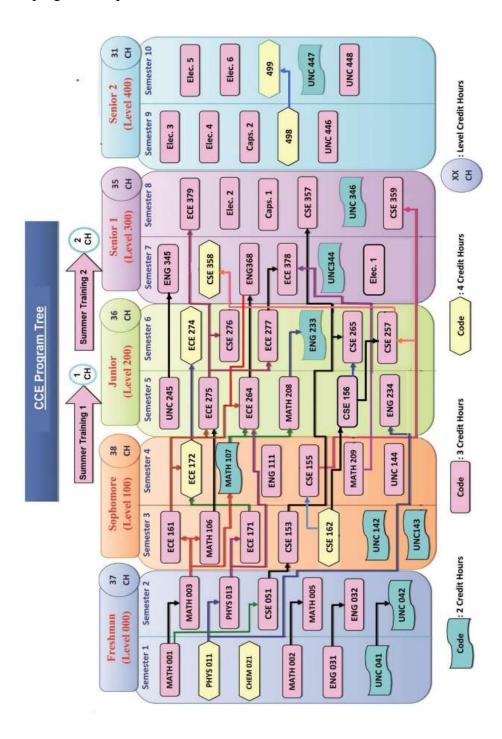
Communication and Computers Engineering Program (CCE) Regulation 2013

Program
Curriculum &
Study plan &
Course Syllabi

1. Program Curriculum


Table 5-1. Regulation 2013; CCE Program Curriculum

Course Code	Course Name	Indicate Whether Course is Required		ect Area (Credit Ho	ours)	Last Two Terms the Course	Maximu m Section Enrollme
		, Elective or a Selected Elective by an R, an E or an SE.1			was Offered:	nt for the Last Two Terms the Course was Offered	
YEAR (1-5	S)/ SEMESTER 1-10		Math & Basic Sciences	Engineering Topics Check if Contains Significant Design (√)	Other		
MATH 001	Calculus 1	R	3			F22, SP22	7, 3
PHYS 011	Physics-1	R	4			F22, SP22	3,3
UNC 041	English 1	R			2	F22, SP22	16,6
ENG 031	Engineering Fundamentals 1	R			3	F22, SP22	18,19
MTH021	Engineering Chemistry Fundamentals	R	4			F22, SP22	8,8
MATH 002	Engineering Mechanics 1	R	3			F22, SP22	12,6
ENG 032	Engineering Fundamentals 2	R			3	F22, SP22	3,6
CSE 051	Computer Programming	R		3(√)		F22, SP22	11,13
MATH 003	Calculus 2	R	3			F22, SP22	6,8
MATH 005	Engineering Mechanics 2	R	3			F22, SP22	7,14
PHYS 013	Physics-2	R	4		2	F22, SP22	10,6
UNC 042	English 2	R	2		2	F22, SP22	19,59
MATH 106	Differential Equations	R	3			F22, SP22	26,4
ECE 161	Electric Circuit Analysis	R		3		F22, SP22	30,11
CSE 162	Logic Digital Design	R		4(√)		F22, F21	13,152
ECE171	Solid State Electronics	R		3		F22, SP21	29,3
CSE 153	Introduction to Data Structures and Software Engineering	R		3	2	F21, SP22	162,40
UNC142	Finance	R			F22, SP22	71,4	
UNC143	Technical English Writing	R			2	F22, SP22	57,2

MATH 107	Multivariable Calculus	R	2			F22, SP22	8,29
CSE 155	Introduction to Computer Engineering	R		3		SP21, SP22	165,14
UNC144	Decision Support System	R			3	SP21, SP22	147,18
ENG 111	Introduction to Civil Engineering	R		3		F22, SP22	37,2
ECE 172	Electronics 1	R		4(√)		F22, SP22	3,53
MATH 209	Probability and Statistics	R	3			F22, SP22	1,22
501	Summer Training -1	R		1		F22, SP22	12,19
CSE 156	Computer Architecture	R		3		F22, SP22	34,3
ECE 275	Signals and Systems	R		3		F22, SP22	152,34
ECE264	Electromagnetic Fields	R		3		F22, SP22	149,16
MATH 208	Discrete Mathematics	R	3			F22, SP22	188,11
ENG 234	Fundamentals of Thermo-Fluids	R		3		F22, SP22	184,20
UNC 245	Management Information Systems	R			3	F22, F21	192,103
CSE 257	Operating Systems	R		3		F22, SP22	1,171
CSE 265	Databases	R		3(√)		F22, SP22	36,185
ECE 274	Electronics 2	R		4(√)		F22, SP22	2,120
ECE 277	Introduction to Communication Systems	R		3		F22, SP22	1,160
ENG 233	Engineering Economy	R			2	F22, SP22	13,184
CSE 276	Control System	R		3(√)		F22, SP22	197,126
ECE 378	Analog and Digital Communications	R		3(√)		F22, SP22	116,6
CSE 358	Computer Graphics	R		4(√)		F22, SP21	152,30
ENG 345	Operation Research	R			3	F22, SP22	149,25
ENG 368	Electrical Energy Systems	R		3		F22, SP22	142,29
UNC 344	Law for Management	R		,	2	F22, SP22	149,6
CSE 357	Internet Programming	R		3(√)		F22, SP22	1,135
CSE 359	Microprocessor Systems Design	R		3(√)		SP21, SP22	144,102
ECE 379	Digital Signal Processing	R		3		F22, SP22	176,4
UNC 346	Marketing	R		/	2	F22, SP22	94,56
CSE 301	Software Engineering	SE		3(√)		F21, SP22	100,48
CSE 302	Computer & Network Security fundamentals	SE		3(√)		SP20, SP21	45,7
CSE 303	Foundations of Information's	SE		3		F22, F21	53,33
CSE 304	Distributed Systems	SE		3		F22, SP22	99,1
ECE 301	Electronics of Communications	SE		3(√)		SP 17	2
ECE 302	Mobile Communication System	SE		3(√)		F22, F21	4,2

ECE 303	Electromagnetic Waves	SE		3(√)		F19, SP22	10, 61
ECE 304	Optoelectronics	SE		3(√)		SP 19, 20	1, 3
502	Summer Training - 2	R			2	F22, SP22	50,66
UNC446	Quantitative Methods for Quality Control	R			3	F22, SP22	169,58
UNC 447	Professional & Communication Skills				2	F21, SP22	6,130
UNC448	Projects Management	R			3	F22, SP22	24,213
498	Project and Report 1	R		4(√)		F22, SP22	141,65
499	Project and Report 2	R		4(√)		F22, SP22	36,139
CSE 401	Human Computer Interaction			3(√)		F22, SP22	155,11
CSE 402	Web Based Information System	SE		3(√)		SP22	27
CSE 403	Language Processors	SE		3		SP21	260, 64
CSE 404	Multimedia	SE		3		F 18, SP20	14, 1
CSE 405	Parallel Algorithms	SE		3		SP 19, SP21	125, 115
CSE 406	Embedded and Real Time System	SE		3		F22, F21	4,19
CSE 407	Decision Algorithms	SE		3		F22, SP22	3,91
CSE 408	Selected Topics in Computers and information			3		F22, F21	110, 47
ECE 401	Integrated Circuit Design	SE		3(√)		F 15, SP 16	8, 3
ECE 402	RF Circuits and Devices	SE		3(√)			
ECE 403	Microwave Engineering	SE		3		SP 16	16
ECE 404	Antennas	SE		3(√)		SP22, S22	19, 3
ECE 405	Communication Networks	SE		3		F22, F 20	185, 74
ECE 406	Telecommunication Systems	SE		3			
ECE 407	Digital Image Processing	SE		3		F22, SP21	55,11
ECE 408	Selected Topics in Electronics and Communications			3		SP20, SP21	50, 169
ELEC 1	German Language	SE		3		SP22	9
HR0	Human rights (Contemporary Social Issues)			0			
	TOTALS (in terms credit hours)		35 Hours	106 Hours	39 Hours		
	Total must satisfy minimum credit hours	Minimum Semester Credit Hours	30 Hours	45 Hours			

1. The following flow chart (course tree 2013) illustrates the prerequisites structure of the program's required courses.

Further, the study plan for regulation 2013 is separated among 10 semesters distributed as follows

• Freshman Year-Fall Semester:

Code	Name	Total Hours	Class Work	Final Exam	Total	Prerequisites
MATH 001	Calculus- 1	3	50	50	100	
PHYS 011	Physics-1	4	50	50	100	
MATH 002	Engineering Mechanics-1	3	50	50	100	
ENG 031	Engineering Fundamentals -1	3	50	50	100	
MTH 021	Engineering Chemistry Fundamentals	4	50	50	100	
UNC 041	English	2	50	50	100	
	Total	19	300	300	600	

• Freshman-Spring Semester:

Code	Name	Total Hours	Class Work	Final Exam	Total	Prerequisites
MATH 003	Calculus- 2	3	50	50	100	MATH 001
PHYS 013	Physics-2	4	50	50	100	PHYS 011
MATH 005	Engineering Mechanics-2	3	50	50	100	MATH 002
CSE 051	computer programming	3	50	50	100	MATH 001
ENG032	Engineering Fundamentals -2	3	50	50	100	ENG 031
UNC 042	English-2	2	50	50	100	UNC 041
	Total	18	300	300	600	

• Sophomore -Fall Semester:

Code	Name	Total Hours	Class Work	Final Exam	Total	Prerequisites
ECE161	Electric Circuit Analysis	3	50	50	100	MATH003
Math106	Differential Equations	3	50	50	100	MATH003
CSE 153	Introduction to Data Structures and Software Engineering	3	50	50	100	CSE051
ECE171	Solid State Electronics	3	50	50	100	PHY 013
CSE 162	Logic Digital Design	4	50	50	100	
UNC142	Finance	2	50	50	100	
UNC143	Technical English Writing	2	50	50	100	
	Total	20	300	300	600	

• Sophomore -Spring Semester:

Code	Name	Total Hours	Class Work	Final Exam	Total	Prerequisit es
CSE155	Introduction To Computer Engineering	3	50	50	100	CSE 162
ECE172	Electronics 1	4	50	50	100	ECE 171 – ECE 161
ENG 111	Introduction to Civil Engineering	3	50	50	100	
MATH 209	Probability and Statistics	3	50	50	100	
MATH 107	Multivariable Calculus	2	50	50	100	MATH 001, 003
UNC144	Decision Support Systems	3	50	50	100	
	Total	18	300	300	600	_

Junior-Fall Semester:

Code	Name	Total Hours	Class Work	Final Exam	Total	Prerequisites
ENG234	Fundamentals of Thermo- fluids	3	50	50	100	PHY 011
ECE264	Electromagnetic Fields	3	50	50	100	MATH 107, ECE 161, PHYS 013
ECE 275	Signal and Systems	3	50	50	100	MATH 106 – ECE 161
MATH208	Discrete Mathematics	3	50	50	100	MATH 107
CSE 156	Computer Architecture	3	50	50	100	CSE 162
UNC245	Management Information System	3	50	50	100	
	Total	18	300	300	600	

Junior-Spring Semester:

Code	Name	Total Hours	Class Work	Final Exam	Total	Prerequisites
CSE 276	Control Systems	3	50	50	100	ECE 275
ECE274	Electronics-2	4	50	50	100	ECE 172
CSE 265	Databases	3	50	50	100	CSE 153, CSE 156
ECE277	Introduction to Communication Systems	3	50	50	100	ECE 275
ENG233	Engineering Economy	2	50	50	100	MATH 208
CSE 257	Operating Systems	3	50	50	100	CSE 155, CSE 156
501	Summer Training1	1	-	-	P/F	
	Total	19	300	300	600	

• Senior 1-Fall Semester:

		Total Hours	Class Work	Final Exam	Total	
CSE358	Computer Graphics	4	50	50	100	CSE 257
ENG368	Electrical Energy Systems	3	50	50	100	ECE 161, ECE 264
ECE378	Analog and Digital Communications	3	50	50	100	ECE 277, MATH 209
	Elective course 1	3	50	50	100	
UNC344	Law for Management	2	50	50	100	
ENG 345	Operation Research	3	50	50	100	UNC 245
	Total	18	300	300	600	

• Senior 1-Spring Semester:

		Total Hours	Class Work	Final Exam	Total	Prerequisi
CSE 359	Microprocessor Systems Design	3	50	50	100	CSE 155
ECE379	Digital Signal Processing	3	50	50	100	ECE 275
CSE357	Internet Programming	3	50	50	100	CSE 051, CSE 153
	Elective course 2	3	50	50	100	
	Capstone Design Elective 1	3	50	50	100	
UNC346	Marketing	2	50	50	100	
502	Summer Training 2	2	-	-	P/F	
	Total	19	300	300	600	

Senior 2-Fall Semester:

		Total Hours	Class Work	Final Exam	Total	Prerequisites
	Elective course 3	3	50	50	100	
	Elective course 4	3	50	50	100	
	Elective Design course	3	40	50	100	
498	Project and Report 1	4	50	50	100	
UNC 446	Quantitative Methods For Quality Control	3	50	50	100	
	Total	16	250	250	500	

• Senior 2-Spring Semester:

		Total Hours	Class Work	Final Exam	Total	Prerequisites
	Elective course 5	3	50	50	100	
	Elective course 6	3	50	50	100	
499	Project and Report 2	4	50	50	100	498
UNC 447	Professional & Communication Skills	2	50	50	100	
UNC 448	Project Management	3	50	50	100	
	Total	15	250	250	500	

3. Course Syllabi

Level 000

2 Cr	English (1)	UNC041
2 CI	Edgust (1)	UNCU41

Prerequistes----:

Technology in use (listening)-Live in maintenance (reading)-Technical writing (paragraph)-Materials Technology (listening)-Industrial process monitoring (reading)-Technical writing (Essay)-Technical writing (report)-Technical writing (structure and types)

2 Cr	English (2)	UNC042
------	-------------	--------

Prerequistes---: UNRO41

Analysis and interpretation of engineering issues – summarizing engineering issues – preparation for language tests

3 Cr Calculus 1 MATH 001

Prerequistes---:

Transcendental Functions-Derivatives-Applications of Differentiation-Polynomial Functions-Partial Fractions-System of Linear Algebraic Equations-Partial Derivatives

3 Cr Calculus 2 MATH 003

Prerequistes----: MATH 001

Techniques of integration –Integration by reduction –Definite integral ad its properties Improper integral –Applications of integration (area, volume, and arc length)–First order ordinary differential equations–Infinite series–Quadratic equation of two variables

Conic sections -Parametric equation of conic sections-Coordinate systems in space-line and plane in space -Quadratic surfaces (cylinder, sphere, ellipsoid, hyperboloid, cone and paraboloid).

3 Cr Engineering Mechanics 1 MATH 002

Prerequistes----:

Force Vectors – 3 Dimensions – Equilibrium of particles in 3 Dimensions

Force System resultants – Equilibrium of Rigid Body in three dimensions – Centroids and Centers of gravity – Analysis of simple structures, Frames, and Machines.

3 Cr	Engineering Mechanics 2	MATH 005	
Prerequist	Prerequistes: MATH 002		

Distributed loads and Fluid statics –Simple Trusses, Method of Joints and Method of Sections

Dry Friction and its application, Frictional forces on Screws and Wedges –Kinematics of a particle
and General curvilinear motion –Curvilinear motion in different coordinates

4 Cr Physics (1) PHYS 011

Prerequistes---:

Units and dimensional analysis – Mechanical properties of metal Experiment: Determine the Young's modulus of materials. – Oscillations. Experiments: 1 – Determine the gravity of acceleration by using the simple pendulum. 2 – Determine the spring constant and the verification of Hook's law.

The Wave and superposition principle -The Sound waves and Doppler effect Experiments: 1-Determine the speed of sound by using open air column and tuning forks. Temperature and thermometers. - Quantity of heat Experiments: Determine the melting point of wax. -Thermal expansion -Heat transfer The first law of thermodynamics -The entropy and the second law of thermodynamics.

4 Cr Physics (2) PHYS 013

Prerequistes---: PHYS 011

The Charge and the electric field – Coulomb's law – The electric flux and Gauss's law The electric potential – The capacitors and dielectrics The magnetic field –Boit– Savart's law – The magnetic flux Gauss's Law – Faraday's Law – Magnetic Induction. – Nature of light – Experiment: Determine the refractive index of the prism's material – Interference of light – Diffraction – Polarization – Experiment: Verification of Malus' law. – Early quantum theory – Special Relativity

4 Cr Engineering Chemistry Fundamentals MTH 021

Prerequistes---:

Equation of state. - Lab: Acid Base Titration - Chemical thermodynamics. - Lab: Oxidation Reduction Titration - Material and heat balance in fuel combustion and chemical processes. - Properties of solutions -Lab: Precipitation Titration (Chlorides) - Electrochemistry Introduction to corrosion engineering - Industries of Dyas & Chemistry of cement &fertilizer-Dynamic Equilibrium in Physical and Chemical Processes

3 Cr Computer Programming CSE 051

Prerequistes---: MATH 001

Problem solving techniques for engineering problems in the field of electrical, electronics and omputer Engineering. – Procedural programming concepts. – Object oriented programming, inheritance, overriding, and overloading. –Compiling, linking, and debugging using C++ and Java programming languages. – Case study 1: building a complete database application. – Case study 2: building a complete Network application using ports and sockets.

3 Cr Engineering Fundamental 1 ENG

Prerequistes---:

History of Engineering – Engineering Fields of Specialization and Curricula. – The Engineering Profession: Professionalism, Problem Presentation and Solution, Ethics, Licensing. – Introduction to Drafting and Descriptive Geometry. – Basic Geometric Operations. – 2–D Sketching, Dimensioning – Isometric Pictorials. – Software application.

3 Cr	Engineering Fundamental 2	ENG 032	
Prerequistes: ENG 031			
Introdu	actory to Drafting and Descriptive Geometry - Free-hand Sketching & Letter	ing– Geometric	

Introductory to Drafting and Descriptive Geometry - Free-hand Sketching & Lettering- Geometric Constructions - Orthographic Projection- Pictorial Projection - Missing Views and Sectional Views - Software Application

Level 100

3 Cr	Summer Training – 1	501	
Prerequistes:			
Safety implications of electrical equipments - Use of electronic measuring devices - Network			
basics and	basics and programming - Arduino systems and projects		

3 Cr	Introduction to Data Structures and Software Engineering	CSE 153			
Prerequiste	Prerequistes: CSE 051				
Introduction	Introduction to Data Structure and algorithm - Develop facility in thinking about abstract data types.				
Analyze the	Analyze the efficiency of algorithms – Abstract Data Types – Array one , two dimention (Declareation				
– dealing) example – Linked List (usage – declaration – example – Functions – types) –Stack (Usage					
– declaration – implementation Functions –) example – Tree ((Usage – declaration – implementation					
- Functions -)example -Search Algorithm (linear - Binary)					
Sorting (Bubble - quick - merge) -Evaluation and analysis of studied algorithms using a					
recent pro	recent programming				

3 Cr	Introduction to Computer Engineering	CSE 155
Prerequistes-	: CSE 162	

An Introduction to the design and operation of digital computers – Information Representation Logic Design – Integrated Circuits – Register Transfer Description – Basic Computer Organization – Machine-Level Programming – An Introduction to the design and operation of digital computers

4 Cr Logic Digital Design CSE 162

Prerequistes---:

Numbering System and operations – Decimal Coding systems – Boolean Algebra Logic gates and implementations – Karnof map – Main Terms – combinational circuits design Adders, Sub-tractors, Decoder, encoder and multiplexer implementations

3 Cr Electrical Circuit Analysis ECE 161

Prerequistes---: MATH 003

Elements of electrical circuits - Simple resistive circuits - Analysis of DC circuits - Theories of electrical circuits - First-order circuits - steady AC sinusoidal circuits - Power and power factor Resonance circuits - Three-phase circuits

3 Cr Solid State Electronics ECE 171

Prerequistes---: PHY 013

Crystal Structures - Bonding and Imperfections in crystals Schrodinger Equation - Allowed and Forbidden Energy band-gaps Krong Penny Model - EK diagram- Materials and Density of States-Intrinsic and Extrinsic Semiconductors- Extrinsic Carrier Concentration- PN Junctions - Virtual Labs on Crystals, band structure and PN junction

3 Cr Introduction to Civil Engineering ENG 111

Prerequistes---:

General classes of materials. – Testing, inspection, specifications of different types of materials. Mechanical Behaviors of metals, static tensions, static compression. – Building stones. – Mineral aggregates classifications. – Surveying – earth shape. – Types of surveying. Loads and reactions. – Internal forces. – Applications.

4 Cr Electronics1 ECE 172

Prerequistes---: ECE 161, ECE 171

Revisions on , N type, P type semiconductors and PN junctions–Rectifier Diodes, Half, Full–Wave Rectifiers and Rectifier Filters– Diode limiting, clamping circuits and voltage multiplier Zener Diodes, and Their Applications– Optical Diodes and simulation for diode circuit applications– Bipolar Junction Transistors, Fundamentals– Bipolar Junction Transistors, Biasing circuits– Junction Field Effect Transistors, Fundamentals and Biasing circuits– MOSFET Field Effect Transistors, Fundamentals and Biasing circuits

3 Cr Differential Equations MATH 106

Prerequistes---: MATH003

Applications of partial differentiation. -Maximum values of functions in more than one variable and applications- First order differential equations- Second order differential equations Laplace transform and its applications- Analytical geometry in space

2 Cr Multivariable Calculus MATH 107

Prerequistes---: MATH 001, MATH 003

Fourier series -Fourier transform- Complex numbers- Functions of a complex variable- Complex integration- Residue theorem- Direction derivatives- Double integrals- Triple integrals- Line integrals- Surface integrals

3 Cr Probability and Statistics MATH 209

Prerequistes----:

Measures of tendency and dispersion. Probability distributions Sampling theorem Tests of hypothesis Non-parametric tests Regression and correlation - Time series.

2 Cr Finance UNC142

Prerequistes---:

Natural theory of cost-profit maximization – Capital investment. – Market structure. Production relations – Decision making. – Add economic project analysis and student presentations to practice for effective communication with listeners

2 Cr Technical English writing UNC 143

Prerequistes---:

Technical writing definition- audience analysis- Technical writing styles- Technical document characteristics Automated document organization- official and unofficial document types- Structure of different types of technical documents.

3 Cr Decision Support Systems UNC 144

Prerequistes---:

An overview of Decision support system (DSS).— An overview of Visual Basic.— The creation of a decision support system using automation. — Integrate Visual Basic with Microsoft Office object models.— Intermediate & advanced Visual Basic topics include ActiveX Documents, ActiveX Controls, ActiveX components, Active Server Pages.— Scientific research techniques and the ability to analyze and solve problems

level 200

CSE 257	Operating Systems	3 Cr
Prerequistes	CSE 155, CSE 156	

Introduction to the operating system, background, and basics – Operating system history, and design issues File systems – Study of different data access methods –System resources management – Managing and scheduling tasks (CPU scheduling) –Memory hierarchy –Memory types – Different memory implementations – Memory management techniques Secondary storage management – Cache memory implementation –Implement simple cache memory using a programming language–Sequential execution – System selection consideration–Study of recent operating systems – Process synchronization–Threads–Interrupts Deadlock detection methods– Deadlock prevention and system recovery methods–Virtual memory concepts, paging, segmentation and address mapping–Secondary storage management, disk components, disk scheduling, and swap–space management–UNIX process control and management.

CSE 265	Data Bases	3 Cr
Prerequistes	CSE 153, CSE 156	

Basic database concepts -Data structures and operations -Data modeling-Database system architecture -Data definition and data manipulation languages -query languages including Algebra and SQL -software package training

CSE 156	Computer Architecture	3 Cr
Prerequistes	CSE 162	

Computer arithmetic – design of ALU Pipelined ALU and processor – multiprocessors – multicomputers control unit –Instruction repertoires (RISC, CISC) – interrupt circuits Bus synchronization – I/O devices – channels – memory architectures Connection of computer peripherals – Distributed Systems scalable computer platforms –vector processors – vectorizing compilers systolic arrays – loosely and tightly coupled processors symmetric and CC–NUMA multiprocessors – data flow machines interconnectin networks–clustering – parallel processors architecture parallel programming performance evaluation – case studies

CSE 276	Control Systems	3 Cr
Prerequistes	ECE 275	

Introduction to control systems - Open and closed loop control systems -Laplace transformation and transfer function -Block diagram reduction -Signal flow graph -Modeling of systems: (Electrical circuits, Mechanical systems, DC motors) -Modeling of systems: (AC servo motors, Synchro, Potentiometers, stepper motors - Hydraulicservo motor - Thermal systems - liquid level systems)-Linearization of nonlinear mathematical model - Time response analysis: (First order systems -steady state error)-Time response analysis: (second order systems) - Stability of control systems: (Routh stability analysis)-Stability of control systems: (Determining relative stability using Routh and root locus method)-Applications of the previous topics using MATLAB/Simulink toolboxes.

ECE 264	Electromagnetic fields	3 Cr
Prerequistes	MATH 107, ECE 161, phy 013	

Vector analysis and Coordinate systems-electrostatic charges -Gauss Theorem-Laplace operator, Boundary conditions, PEC -Capacitors analysis using Q, V methods and simulation tools-moving charges and current carrying wires-Magnetic Field, Intensity, Flux and Coils-Faradat's, Lenz -Modified Ampere's Law and Maxwell's equations

ECE 274	Electronic 2	4 Cr
Prerequistes	ECE 172	

SCR, Triac, special diode -BJT/FET non-idealities -Small signal analysis -Single stage amplifier-Multiple stage amplifier -differential amplifier, OPAMPs, and linear digital ICs

ECE 275	Signals and Systems	3 Cr
Prerequistes	ECE 161, MATH 106	

Introduction to signals-Linear time-invariant systems -Laplace Transform and Continuous-time signals-Z-Transform and discrete-time signals-Spectral analysis and Fourier Transform

ECE 277	Introduction to Communications Systems	3 Cr
Prerequistes	ECE 275	

Introduction to communication systems-Power spectral density-Amplitude modulation (suppressed and large carrier)-Frequency modulation-Wide band FM-AM and FM receivers.-Noise in analog modulation systems.-An introduction to the structure and types of mobile comm. systems - the seven-layer communication model - network planning and design - and its applications.

ENG 233	Engineering Economy	2 Cr
Prerequistes	MATH 208	

Introduction to engineering economy studies, balance sheet, income statement, cash flow statement-Time value of money with simple interest rate-Time value of money with compound interest rate-Economical evaluation and feasibility study of engineering projects-Payback period – Net present value concepts and applications-Equivalent annual – Net future value concepts and applications-Benefit – cost ratio concepts and applications-Inflation effects and applications of engineering projects-History of Engineering, Science and Technology, the role of engineering and technology in the development and emergence of civilizations, and analysis of economic projects (Gap analysis)

ENG 234	Fundamentals of Thermo Fluids	3 Cr
Prerequistes	Phy011	

Introduction of thermodynamics concepts and definitions–Continuity, momentum and energy equations–Pure substance and ideal gases–Laminar and turbulent flows–First law of thermodynamics in closed systems–Laminar and turbulent flows–First law of thermodynamics in open systems–Flow in conduits–Second law of thermodynamics–Gas cycles–Turbo machinery–Heat transfer basics

Prerequistes MATH 107	MATH 208	Discrete Mathematics	3 Cr
Trotograme:	Prerequistes	MATH 107	

Introduction to logic and proof -Mathematical induction-Counting technique-Algorithms-Relations-Graphs and trees

level 300

CSE 301	Software Engineering	3 Cr
Prerequistes		

An introduction to basic concepts of software engineering-Software development process (Waterfall models, Agile methods, Rapid application development)-System modeling using UML-Data flow diagram design, System architecting and design-Process Model: practical: implement a client server database model-Testing, validation, verification: practical: implement a client server model-Quality Assurance& Configuration Management-Software project management-Implement and design applications using recent design tools

CSE 302	Computers Fundamental and Network Security	3 Cr
Prerequistes	ECE 277	

Introduction to computer Networks-Computer network and topology-Computer network and model-Security principles and security threats-Protocols for Security Services-Elements of cryptography-Advanced security issues and technologies-Network programming

CSE 303	Foundmental of Information Systems	3 Cr
Prerequistes	CSE 155, UNC 245	

Introduction to Information Systems, dimensions of information systems-Global E-Business today-Data and Knowledge, Management information systems-Database, knowledge base Architecture-Information system approaches and complementary assets-Functional and cross functional Business processes, TPS and BI-Enterprise systems and social/electronic business-Supporting information systems-Organizational politics and structures - Social and political issues of information systems

CSE 304	Distributed Systems	3 Cr
Prerequistes		

An introduction to distributed systems-System models (physical and architectural models)-Networking and internetworking-Network virtualization and communication -Peer-to-peer systems and web services-Cloud and grid computing -Design and implement Real distributed system projects

CSE 357	Internet Programming	3 Cr
Prerequistes	CSE 051, CSE 153	

Client server programming models-Protocols – server design and constructions such as; fault tolerance, caching, proxying, and security-Web service-Programming network applications-Web based applications-Implementing database applications on the web-Introduction to Embedded programming and multi-threaded programming

CSE 358	Computer Graphics	3 Cr
Prerequistes	CSE 257	

The principles of computer drawing, computer graphics, and introduction to computer graphics with programming language–Graphics algorithms and applications–Computer graphics with Java Applet–2D drawing methods and functions (Line, rectangle, circle, polygon, images) (Resolution – Brightness – Intensity)–Image formats, color systems (Gray, RGB,)–Animation, event handler–3D drawing methods and functions–Experimental projects with Java programming language and appropriate tools.

CSE 359	Microprocessors System Design	3 Cr
Prerequistes	CSE 155	

Introduction to microprocessor system-Architecture of microprocessor and registers-Hardware connections, buffers and latches-Clocking and timing issues-Addressing modes-Memory management and interface circuit design-Input/output management and interface circuit design-PPI architecture and design examples.-Microprocessor projects design applications-Introduction to Assembly language programing

ECE 302	Mobile Communication systems 3 Cr	
Prerequistes	ECE 378	

Conventional telephone systems-Traffic theory-Conventional mobile system – Frequency spectral efficiency-Methods of increasing system capacity – System architecture-Multiple access schemes – Interference in cellular systems-Hand off – Fading and Doppler in cellular system -GSM system architecture – GSM channel coding-Ciphering and modulation-System management.

ECE 378	Analog & Digital Communications	3 Cr
Prerequistes	ECE 277 & MATH 209	

Introduction to modern digital communication systems-Waveform Coding Systems -Base Band PCM transmission and probability of error -Information Theory, Coding, and Channel Capacity-Channel Coding for Error Detection and Correction-Digital Modulation/Demodulation-Spread Spectrum Communications-Seven-layer communication model and network planning, design and layers

ECE 379	Digital Signal Processing	3 Cr
Prerequistes	ECH	E 275

Converting analog signals to digital signals-IIR digital filter design - FIR digital filter design-implementation of digital filters-Wiener filter - adaptive filters-data compression and encryption-Applications on digital signals.

ECE 301	Electronics for Communication	3 Cr
Prerequistes	ECE 274	

Passive network synthesis-Active network design-Data acquisition systems-Data converters-Logic families-Phase locked loops.-Communication circuits.

ECE 303	Electromagnetic Waves	3 Cr
Prerequistes	ECE 264	

Time varying fields and Maxwell's equations, boundary conditions at different media interface, retarded potentials, plane wave propagation in free space-TEM transmission lines, transmission line equivalent circuit-transmission line circuit theory, Smith chart, lossy transmission lines, matching techniques-Parallel palate waveguides-Circular waveguides

ECE 304	Optoelectronics	3 Cr
Prerequistes	ECE	264

Introduction, Photons & Electrons. Maxwell's equations, Wave nature light, Emission of and Absorption processes.—Fundamentals of Optics, Ray optics: reflection, refraction, critical and Brewster angles. Interference of light, Interferometers, Diffraction and Polarization–Light and matter: Emission, Propagation and Absorption Processes—Optical Coherence and Correlation: Definition, Measurement of coherence and Practical examples—Essential Physics of Radiation and Solids: Black body radiation, Classical results and Quantum results. Rate Equations and the Gain mechanism. Laser Structure, Mode locking and Q switching.—Electrons in solids: Laser sources (He=Ne Laser, Argon Laser and ND-YAG Laser), SC sources (LEDs and SLDs)—Optical Modulators: Internal modulation, External modulators: Electro optic, Magneto optic and Acousto—optic modulator—Photo detectors: photo—emissive, photoconductive and photovoltaic detectors—Testing of the basic characteristics of optical sources, detectors, and optical components.—Assignments Presentation and discussions.

ENG 368	Electrical Power Systems	3 Cr
Prerequistes	ECE 161, ECE 264	

Electrical power systems-three phase systems-Theory and models of transformers-Transmission line models-Voltage and frequency control, effective and ineffective power-Optimal work of power systems-The theory of operation - The construction of the Direct Current motors-The speed storque and current characteristics - applications of the DC motors-The theory of operation and construction of stepper motors - Permanent-magnet DC motor and Low-inertia DC Motors-The theory of operation construction of three phase induction motors.

502	Summer Training (2)	2 Cr
Prerequistes		

Embedded systems -Computer engineering basics -Communication measurements-Mobile communication devices troubleshooting -Computer engineering managements -Field practical training -Reports, and projects outputs

UNC 344	Law for Management	2 Cr
Prerequistes		

Systems and laws of institutions-Introduction to Accounting-Labor legislation and laws governing engineering professions-Industrial security legislation and environment-Historical philosophical origins of human rights-international sources of human rights-national sources of human rights-global bodies based on the protection of human rights

UNC 345	Operational Research	3 Cr
Prerequistes	UN	NC 245

Introduction and history of Operations Research-Overview of Operations Research Modeling Approach-Introduction to Linear Programming-Graphical method -Simplex method-Transportation problem-Assignment problem-Integer programming-Network Analysis-Program Evaluation and Review Technique and Critical Path Method (PERT and CPM)

UNC 346	Marketing	2 Cr
Prerequistes		

Principles of products marketing-Marketing research-Customers buying behavior-Marketing mix-Plotting marketing strategy-Building marketing plan-Pinpointing the target market-Marketing on the world wide web

level 400

4 Cr	Project and Report (1)	498	
Prerequistes: 127			
Completic	Completion of a project using all previously learned sciences from different fields in order to		
solve a realistic problem in a team. The project ends with a technical report and a discussion.			

4 Cr	Project and Report (2)	499	
Prerequist	es: 498		
Completic	Completion of a project using all previously learned sciences from different fields in order to		
solve a realistic problem in a team. The project ends with a technical report and a discussion.			

3 Cr	Human Computer Interaction	CSE 401
Prerequist	2 8 :	
Interfacing and Map of Human Computer Interaction -Interfacing with python		
programming, data types, operators, numbers, decision makingPython collections (lists, set,		
tuple, dictionary), loops -Interfacing with files (text and excel files)		

Functions, different types of function arguments – Object oriented programming (OOP) concepts with python –GUI programming with Tkinter

3 Cr Web based information Systems CSE 402

Prerequistes---: CSE 056

Introduction to client programming– Illustrating HTTP protocol–Discussing major technologies used in building Web servers. –Explaining components of Windows-based IIS Server.– Implementing Windows-based IIS Server using ASP. NET along with C#–Explaining components of Apache Server.–Implementing Apache Server using PHP–SQL database servers-XML programming.

3 Cr Language Processors CSE 403

Prerequistes----:

Introduction to the theory of languages -Evolution of computer languages and translators formal specification of languages -context dependent and context free languages logical structure of a compiler -lexical, syntax and semantic analysis code generation and optimization -storage and register allocation - runtime considerations

3 Cr Multimedia systems CSE 404

Prerequistes---: ECE407, ECE379

An introduction to multimedia -Multimedia presentation, Data compression, Data production Graphics and image data representation -Color in Image and Video -Multimedia data compression (Lossless, Lossy compression techniques, and Basic Video Compression Techniques) -Design and implement multimedia projects

3 Cr Parallel Algorithms CSE 405

Prerequistes---:

Parallel languages: general principles, parallel constructs, vectorizing compilers, issues – portability. Practical exposure to parallel programming –Parallel algorithms: general principles, recurrences, parallel approach to data structures and computational structures Future trends: technology, design limitations, future supercomputers. –Parallel algorithm implementations –Origins of parallelism, classification of algorithm designs, characterization of performance

3 Cr	Decision Algorithms	CSE 407
------	---------------------	---------

Prerequistes---:

Introduction to A.I. - Common application for A.I. -Importance of knowledge, knowledge representation -Reasoning methods and dealing with uncertainty -Search concepts -Rule based expert systems -Expert systems dealing with uncertainty -Prolog tutorial and A.I. programming concepts

3 Cr	Embedded and real time System	CSE 406
Prerequistes:	CSE 155	

An introduction to embedded systems -Embedded computing platform principles-Microcomputer systems -PIC18F Microcontroller Series -C programming Language Functions and Libraries in mikroC -System analysis and architecture design -Simple Projects with C Programming Language

3 Cr Integrated Circuits Design ECE 401

Prerequistes---: ECE 274

IC technology – Tuned amplifiers – Noise analysis –Operational amplifiers and applications – Waveform generation – Analog IC applications (analysis and design) –Evaluation of circuit performance by computer-aided circuit simulations –Phase locked loops – Electronic circuits in radio and television –Video recording

|--|

Prerequistes---: ECE 264, ECE 274

Wiener filters, linear prediction -steepest-descent and stochastic gradient algorithms - frequency-domain adaptive filters - method of least squares, recursive least squares, fast fixed order and order-recursive (lattice) filters -Mis adjustment, convergence and tracking analyses, stability issues, finite precision effects -connections with Kalman filtering and nonlinear adaptive filters

3 Cr	Microwave Engineering	ECE 403
------	-----------------------	---------

Prerequistes---: ECE 264, ECE 274

Rectangular and circular wave guides –Cavity resonators –Excitation of waveguides –Surface guiding and dielectric optical waveguides –Analysis of microstrip and strip lines –Scattering parameters –Wave propagation in ferrite media and passive microwave components

3 Cr Antennas EC	E404
------------------	------

Prerequistes---: ECE 264

Maxwell's equations, and field analysis -Antenna parameters -Fundamental antennas - Antenna arrays -Introduction to wave propagation -Ground waves and Space waves -Antenna Array Synthesis

3 Cr Communications Networks ECE405

Prerequistes---: ECE 277

Introduction To Computer Networks –Experimental: NIC and UTP cable, installing.

Introduction to Data Communication –Experimental: PCs on a Network –Network Components (HW– SW) – Network Architecture –Computer Network Classification and types –Network Layered Model for communication and different communication protocols –Network Design techniques and modeling – 7 Layers Model (ISO–OSI) – Experimental: PCs on the Internet. Application Layer protocol –Experimental: Wireless Networks and Mobile Systems. Transmission Layer Protocol –Network layer Protocol – Study Different Routing Algorithms Digital integrated network system –Experimental: interference between Bluetooth and 802.11b Routing –Ethernet and packet Decoding –Practical Study and Exercises –Experimental: Configure ICS and Trace the Operations of DHCP and NAT

3 Cr	Telecommunications Systems	ECE 406
Prerequistes	ECE 277	

Discrete Fourier Transform and its properties – Fading (fast, slow, and flat) – Frequency – selective and non-selective – Dual Multi–Tone (DMT) – OFDM – Multi–path propagation – Delay spread values and Guard time and cyclic extension – OFDM parameters, OFDM versus single carrier modulation. – Spread Spectrum – PN sequence generators – Direct sequence Spread Spectrum – Probability of error – Frequency Hopping Spread Spectrum – CDMA – DS–CDMA

3 Cr	Digital Image Processing	CCE 461
Prerequistes: ECE 379		
Image Rep	resentation - Methods Of Image Processing -Enhancement - Data Con	npression -

Reconstruction From Projection - Features Extraction - Image Analysis - Pattern Recognition - Computer Vision

3 Cr	Quantitative Methods For Quality Assurance	UNC 446
------	--	---------

Prerequistes---:

General Introduction - TQM and principals - TQM tools and techniques - Fundamental of statistics - Control chart for Variables - Control chart for attributes - Sampling plan - Introduction to all of the following processes (plumbing, blacksmithing and carpentry) and its effect on the quality of product

3 Cr Selected Topics in Electronics and Communications Engineering ECE 408

Prerequistes---:

Neural Networks and Biomedical engineering – Cellular telephony – personal satellite communications – Voice telephony. – internet telephony and video conferencing – Advanced topics in the fields of electronics and Communications

2 Cr Professional & Communication Skills UNC 447

Prerequistes---:

Communication skills - Presentation planning and preparation - Delivery skills such as eye contact, voice control, gestures, body language and appearance - Presenter's characteristics - Using visuals - Presentation structure - Elevator Pitch

3 Cr Project Management UNC 448

Prerequistes---:

General introduction – Engineering Projects types and participants – Bar chart planning and scheduling methods – CPM method for planning and scheduling methods – PDM method for planning and scheduling methods – Resource smoothing and leveling

Educational Objectives

The Communications and Computers Engineering program at Mansoura University fosters an academic environment that effectively contributes to its graduates having the choice, talents, and knowledge to:

- 1. PEO1: Pursue a variety of occupations in communications and computer engineering and related industries as engineers, consultants, and entrepreneurs.
- 2. PEO2: Earn postgraduate degrees in communications and computer engineering, as well as multidisciplinary subjects, in local and worldwide graduate programs to become thought leaders, academics, experts, and educators.
- 3. PEO3: Be lifelong learners and innovators in ever-changing global economic and technical contexts of the twenty first century.
- 4. PEO4: Exhibit effective communication, teamwork, entrepreneurial, leadership skills and engage in ethical and function professionally in the economic growth of Egyptian society.

5. Student and Learninf Outcomes

A. Student Outcomes

The CCE program's student outcomes support the CCE program educational objectives. Attainment of these outcomes prepares CCE graduates to enter the professional practice of engineering. The CCE program adopts the EAC of ABET Student Outcomes (1) through (7) as follows:

- 1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- 2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- 3. An ability to communicate effectively with a range of audiences.
- 4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- 5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- 6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- 7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

The CCE program Student Outcomes are posted in the students 'handbooks and online on the program website:

https://engfac.mans.edu.eg/en/accred-4

Additionally, SOs are announced in the form of brochures available to students, as well as a billboard hung on the walls in the faculty building halls, classrooms and Laboratories.

B. Learning outcomes, NARS 2018

The program is accredited from the National Authority for Quality Assurance and Accreditation of Education (NAQAAE) in February 2022. The program was adopted the academic reference standards (ARS 2015) and starting from June 2021, the program adopts national academic reference standards (NARS 2018). Table 3.1 clarifies the relation between the adopted learning outcomes (NARS2018) and the adopted student outcomes (ABET).

Table 3.1. Matching between the student outcomes and Learning Outcomes

Program Student Outcomes (ABET)	Student Outcomes (NARS 2018)	
SO1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics	A1. Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics	
SO2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors	B2.Design, model and analyze an electrical/electronic/digital system or component for a specific application; and identify the tools required to optimize this design. C2. Design and simulation of different applications using computers, multimedia, mobile and web applications C3. Design electromagnetic applications as antennas, microwave resonators, optoelectronics and Fiber optics	
SO3. An ability to communicate effectively with a range of audiences	A8. Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	
SO4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts	A3. Apply engineering design processes to produce costeffective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development A4. Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management Principles. A6. Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements. B5. Adopt suitable national and international standards and codes to: design, build, operate, inspect and maintain electrical/electronic/digital equipment, systems and services.	
SO5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives	A7. Function efficiently as an individual and as a member of multi-disciplinary and multicultural teams. A9. Use creative, innovative and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	
SO6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions	A2. Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions. B1. Select, model and analyze electrical power systems applicable to the specific discipline by applying the concepts of: generation, transmission and distribution of electrical power systems B3. Design and implement: elements, modules, subsystems or systems in electrical/electronic/digital engineering using technological and professional tools B4. Estimate and measure the performance of an	

	electrical/electronic/digital system and circuit under specific input excitation, and evaluate its suitability for a specific application. C1. Design, analyze and measure the performance of communication and control systems, advanced electronics and communication networks.
SO7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.	A10. Acquire and apply new knowledge; and practice self, lifelong and other learning strategies. A5. Practice research techniques and methods of investigation as an inherent part of learning. C4. Acquire the concepts of artificial intelligence and bioengineering including signal processing and image processing